1932

Abstract

Plant volatiles comprise thousands of molecules from multiple metabolic pathways, distinguished by sufficient vapor pressure to evaporate into the headspace under normal environmental conditions. Many are implicated as ecological signals, but what is the evidence—and how do they work? Volatiles diffuse, are carried by wind, and may be taken up by other organisms or degrade with exposure to atmospheric ozone, radicals, and UV light; visual signals such as color are not subject to these complications (but require a line of sight). Distantly related plants—and nonplants—produce many of the same volatiles, yet specific compounds and blends may be distinct. Here, I present a quantitative review of the literature on plant volatiles as ecological signals, illustrating a field that has focused on developing ideas as much as reporting primary data. I discuss advantages and constraints, review recent advances, and propose considerations for primary studies to elucidate particular functions of plant volatiles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-040121-114908
2023-05-22
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-040121-114908.html?itemId=/content/journals/10.1146/annurev-arplant-040121-114908&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adebesin F, Widhalm JR, Boachon B, Lefèvre F, Pierman B et al. 2017. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 356:63451386–88
    [Google Scholar]
  2. 2.
    Ali M, Sugimoto K, Ramadan A, Arimura G-i. 2013. Memory of plant communications for priming anti-herbivore responses. Sci. Rep. 3:1872
    [Google Scholar]
  3. 3.
    Allison J, Hare J 2009. Learned and naïve natural enemy responses and the interpretation of volatile organic compounds as cues or signals. New Phytol. 184:4768–82
    [Google Scholar]
  4. 4.
    Allmann S, Baldwin IT. 2010. Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329:59951075–78
    [Google Scholar]
  5. 5.
    Allmann S, Späthe A, Bisch-Knaden S, Kallenbach M, Reinecke A et al. 2013. Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. eLife 2:e00421
    [Google Scholar]
  6. 6.
    Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC. 2004. Jasmonic acid is a key regulator of spider mite–induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol. 135:2025–37
    [Google Scholar]
  7. 7.
    Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J. 2000. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:6795512–15
    [Google Scholar]
  8. 8.
    Arimura G, Pearse I. 2017. From the lab bench to the forest: ecology and defense mechanisms of volatile-mediated “talking trees.”. Adv. Bot. Res. 82:3–17
    [Google Scholar]
  9. 9.
    Auldridge ME, McCarty DR, Klee HJ. 2006. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr. Opin. Plant Biol. 9:3315–21
    [Google Scholar]
  10. 10.
    Baldwin IT. 2010. Plant volatiles. Curr. Biol. 20:9R392–97
    [Google Scholar]
  11. 11.
    Baldwin IT, Halitschke R, Paschold A, Von Dahl CC, Preston CA 2006. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311:812–15
    [Google Scholar]
  12. 12.
    Baldwin IT, Schultz JC. 1983. Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221:277–79
    [Google Scholar]
  13. 13.
    Berkov A, Meurer-Grimes B, Purzycki KL. 2000. Do Lecythidaceae specialists (Coleoptera, Cerambycidae) shun fetid tree species?. Biotropica 32:3440–51
    [Google Scholar]
  14. 14.
    Birkett M, Campbell C, Chamberlain K, Guerrieri E, Hick A et al. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. PNAS 97:169329–34
    [Google Scholar]
  15. 15.
    Blande JD, Holopainen JK, Niinemets U. 2014. Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant Cell Environ. 37:81892–904
    [Google Scholar]
  16. 16.
    Boland W, Gäbler A. 1989. Biosynthesis of homoterpenes in higher plants. Helv. Chim. Acta 72:247–53
    [Google Scholar]
  17. 17.
    Borrero-Echeverry F, Bengtsson M, Nakamuta K, Witzgall P. 2018. Plant odor and sex pheromone are integral elements of specific mate recognition in an insect herbivore. Evolution 72:102225–33
    [Google Scholar]
  18. 18.
    Bouvier F, Isner JC, Dogbo O, Camara B. 2005. Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci. 10:4187–94
    [Google Scholar]
  19. 19.
    Brattsten L. 1983. Cytochrome P-450 involvement in the interactions between plant terpenes and insect herbivores. Plant Resistance to Insects P Hedin 173–95. Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  20. 20.
    Bruce TJA, Aradottir GI, Smart LE, Martin JL, Caulfield JC et al. 2015. The first crop plant genetically engineered to release an insect pheromone for defence. Sci. Rep. 5:11183
    [Google Scholar]
  21. 21.
    Bruce TJA, Wadhams L, Woodcock C. 2005. Insect host location: a volatile situation. Trends Plant Sci. 10:6269–74
    [Google Scholar]
  22. 22.
    Bruinsma M, Dicke M. 2008. Herbivore-induced indirect defense: from induction mechanisms to community ecology. Induced Plant Resistance to Herbivory A Schaller 31–60. Dordrecht, Neth: Springer
    [Google Scholar]
  23. 23.
    Calogirou A, Larsen B, Kotzias D. 1999. Gas-phase terpene oxidation products: a review. Atmos. Environ. 33:91423–39
    [Google Scholar]
  24. 24.
    Camara B, Bouvier F. 2004. Oxidative remodeling of plastid carotenoids. Arch. Biochem. Biophys. 430:116–21
    [Google Scholar]
  25. 24a.
    Chappell J, Coates RM 2010. Sesquiterpenes. In Comprehensive Natural Products II: Chemistry and Biology. Vol. 1: ed. H-W Liu, L Mander pp. 609–41 Amsterdam: Elsevier
    [Google Scholar]
  26. 25.
    Choh Y, Shimoda T, Ozawa R, Dicke M, Takabayashi J. 2004. Exposure of lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process?. J. Chem. Ecol. 30:71305–17
    [Google Scholar]
  27. 26.
    Clavijo McCormick A, Heyer J, Sims JW, Mescher MC, De Moraes CM 2017. Exploring the effects of plant odors, from tree species of differing host quality, on the response of Lymantria dispar males to female sex pheromones. J. Chem. Ecol. 43:3243–53
    [Google Scholar]
  28. 27.
    Clavijo McCormick A, Unsicker SB, Gershenzon J 2012. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 17:5303–10
    [Google Scholar]
  29. 28.
    Collignon RM, Swift IP, Zou Y, McElfresh JS, Hanks LM, Millar JG. 2016. The influence of host plant volatiles on the attraction of longhorn beetles to pheromones. J. Chem. Ecol. 42:3215–29
    [Google Scholar]
  30. 29.
    Cowan MM. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12:4564–82
    [Google Scholar]
  31. 30.
    Cushman-Roisin B. 2012. ENGS 43: Environmental transport and fate Lectures, Dartmouth Coll https://cushman.host.dartmouth.edu/courses/engs43.html
  32. 31.
    Dahlin I, Rubene D, Glinwood R, Ninkovic V. 2018. Pest suppression in cultivar mixtures is influenced by neighbor-specific plant-plant communication. Ecol. Appl. 28:82187–96
    [Google Scholar]
  33. 32.
    Dani KGS, Loreto F. 2022. Plant volatiles as regulators of hormone homeostasis. New Phytol. 234:3804–12
    [Google Scholar]
  34. 33.
    De Domenico S, Tsesmetzis N, Di Sansebastiano GP, Hughes RK, Casey R et al. 2007. Subcellular localisation of Medicago truncatula 9/13-hydroperoxide lyase reveals a new localisation pattern and activation mechanism for CYP74C enzymes. BMC Plant Biol. 7:58
    [Google Scholar]
  35. 34.
    Degenhardt J, Gershenzon J, Baldwin IT, Kessler A. 2003. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotechnol. 14:2169–76
    [Google Scholar]
  36. 35.
    Demole E, Lederer E, Mercier D. 1962. Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractbristique de l'essence de jasmin. Helv. Chim. Acta 45:79–80675–85
    [Google Scholar]
  37. 36.
    Deng W, Hamilton-Kemp TR, Nielsen MT, Andersen RA, Collins GB, Hildebrand DF 1993. Effects of six-carbon aldehydes and alcohols on bacterial proliferation. J. Agric. Food Chem. 41:506–10
    [Google Scholar]
  38. 37.
    Dewhirst RAO, Afseth CA, Castanha C, Mortimer JCO, Jardine KJ. 2020. Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol. PLOS ONE 15:5e0227591
    [Google Scholar]
  39. 38.
    Dudareva N, Negre F, Nagegowda DA, Orlova I. 2006. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 25:5417–40
    [Google Scholar]
  40. 39.
    Dudareva N, Pichersky E, Gershenzon J. 2004. Biochemistry of plant volatiles. Plant Physiol. 135:1893–902
    [Google Scholar]
  41. 40.
    Eberl F, Uhe C, Unsicker SB. 2019. Friend or foe? The role of leaf-inhabiting fungal pathogens and endophytes in tree-insect interactions. Fungal Interact. 38:104–12
    [Google Scholar]
  42. 41.
    Eigenbrode S, Birch A, Lindzey S, Meadow R, Snyder W. 2016. A mechanistic framework to improve understanding and applications of push-pull systems in pest management. J. Appl. Ecol. 53:202–12
    [Google Scholar]
  43. 42.
    Erb M. 2018. Volatiles as inducers and suppressors of plant defense and immunity—origins, specificity, perception and signaling. Curr. Opin. Plant Biol. 44:117–21
    [Google Scholar]
  44. 43.
    Erb M, Meldau S, Howe GA. 2012. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17:5250–59
    [Google Scholar]
  45. 44.
    Erb M, Veyrat N, Robert CA, Xu H, Frey M et al. 2015. Indole is an essential herbivore-induced volatile priming signal in maize. Nat. Commun. 6:16273
    [Google Scholar]
  46. 45.
    Farag MA, Zhang H, Ryu CM. 2013. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J. Chem. Ecol. 39:71007–18
    [Google Scholar]
  47. 46.
    Fire M, Guestrin C. 2019. Over-optimization of academic publishing metrics: observing Goodhart's law in action. GigaScience 8:6giz053
    [Google Scholar]
  48. 47.
    Francke W, Schulz S. 1999. Pheromones. Comprehensive Natural Products Chemistry, Vol. 8: Miscellaneous Natural Products Including Marine Natural Products, Pheromones, Plant Hormones, and Aspects of Ecology D Barton, O Meth-Cohn 197–261. Amsterdam: Elsevier
    [Google Scholar]
  49. 48.
    Frost CJ, Appel M, Carlson JE, De Moraes CM, Mescher MC, Schultz JC. 2007. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol. Lett. 10:6490–98
    [Google Scholar]
  50. 49.
    Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM. 2008. Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol. 180:3722–34
    [Google Scholar]
  51. 50.
    Fuller EN, Schettler PD, Giddings JC. 1966. New method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 58:518–27
    [Google Scholar]
  52. 51.
    Gasmi L, Martinez-Solis M, Frattini A, Ye M, Carmen Collado M et al. 2019. Can herbivore-induced volatiles protect plants by increasing the herbivores' susceptibility to natural pathogens?. Appl. Environ. Microbiol. 85:1e01468–518
    [Google Scholar]
  53. 52.
    Gershenzon J, Croteau R. 1991. Terpenoids. Herbivores: Their Interactions with Secondary Plant Metabolites GA Rosenthal, MR Berenbaum 165–219. San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  54. 53.
    Gonzalez F, Borrero-Echeverry F, Jósvai JK, Strandh M, Unelius CR et al. 2020. Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths. Ecol. Evol. 10:147334–48
    [Google Scholar]
  55. 54.
    Gouinguené S, Alborn H, Turlings TC. 2003. Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J. Chem. Ecol. 29:1145–62
    [Google Scholar]
  56. 55.
    Hagiwara T, Ishihara MI, Takabayashi J, Hiura T, Shiojiri K. 2021. Effective distance of volatile cues for plant–plant communication in beech. Ecol. Evol. 11:1812445–52
    [Google Scholar]
  57. 56.
    Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT. 2008. Shared signals – “alarm calls” from plants increase apparency to herbivores and their enemies in nature. Ecol. Lett. 11:124–34
    [Google Scholar]
  58. 57.
    Halitschke R, Ziegler J, Keinänen M, Baldwin IT. 2004. Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuata. Plant J. 40:135–46
    [Google Scholar]
  59. 58.
    Hansson B, Wicher D 2016. Chemical ecology in insects. Chemosensory Transduction F Zufall, SD Munger 29–45. Amsterdam: Elsevier
    [Google Scholar]
  60. 59.
    Hansson BS, Stensmyr MC. 2011. Evolution of insect olfaction. Neuron 72:5698–711
    [Google Scholar]
  61. 60.
    Harley P, Greenberg J, Niinemets Ã, Guenther A. 2007. Environmental controls over methanol emission from leaves. Biogeosciences 4:61083–99
    [Google Scholar]
  62. 61.
    Hatanaka A, Kajiwara T, Sekiya J. 1987. Biosynthetic pathway for C6-aldehydes formation from linolenic acid in green leaves. Chem. Phys. Lipids 44:341–61
    [Google Scholar]
  63. 62.
    Hatano E, Saveer AM, Borrero-Echeverry F, Strauch M, Zakir A et al. 2015. A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways. BMC Biol. 13:175
    [Google Scholar]
  64. 63.
    He J, Luck K, Köllner TG, Murdock MH, Ray R et al. 2019. An unbiased approach elucidates variation in (S)-(+)-linalool, a context-specific mediator of a tri-trophic interaction in wild tobacco. PNAS 116:2914651–60
    [Google Scholar]
  65. 64.
    Heil M. 2008. Indirect defence via tritrophic interactions. New Phytol. 178:141–61
    [Google Scholar]
  66. 65.
    Heil M. 2014. Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol. 204:2297–306
    [Google Scholar]
  67. 66.
    Heil M, Kost C. 2006. Priming of indirect defences. Ecol. Lett. 9:7813–17
    [Google Scholar]
  68. 67.
    Heil M, Silva Bueno JC 2007. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. PNAS 104:135467–72
    [Google Scholar]
  69. 68.
    Herde M, Gärtner K, Köllner TG, Fode B, Boland W et al. 2008. Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Plant Cell 20:41152–68
    [Google Scholar]
  70. 69.
    Hoballah M, Turlings T. 2001. Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids. Evol. Ecol. Res. 3:5553–65
    [Google Scholar]
  71. 70.
    Holopainen J, Blande J. 2013. Where do herbivore-induced plant volatiles go?. Front. Plant Sci. 4:185
    [Google Scholar]
  72. 71.
    Holopainen JK, Gershenzon J. 2010. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15:3176–84
    [Google Scholar]
  73. 72.
    Hountondji F, Sabelis M, Hanna R, Janssen A. 2005. Herbivore-induced plant volatiles trigger sporulation in entomopathogenic fungi: the case of Neozygites tanajoae infecting the cassava green mite. J. Chem. Ecol. 31:51003–21
    [Google Scholar]
  74. 73.
    Howard MM, Bass E, Chautá A, Mutyambai D, Kessler A. 2022. Integrating plant-to-plant communication and rhizosphere microbial dynamics: ecological and evolutionary implications and a call for experimental rigor. ISME J. 16:15–9
    [Google Scholar]
  75. 74.
    Howe G, Jander G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66
    [Google Scholar]
  76. 75.
    Jardine K, Barron-Gafford G, Norman J, Abrell L, Monson R et al. 2012. Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions. Photosynth. Res. 113:1–3321–33
    [Google Scholar]
  77. 76.
    Jing T, Qian X, Du W, Gao T, Li D et al. 2021. Herbivore-induced volatiles influence moth preference by increasing the β-Ocimene emission of neighbouring tea plants. Plant Cell Environ. 44:113667–80
    [Google Scholar]
  78. 77.
    Joo Y, Goldberg JK, Chrétien LT, Kim SG, Baldwin IT, Schuman MC. 2019. The circadian clock contributes to diurnal patterns of plant indirect defense in nature. J. Integr. Plant Biol. 61:8924–28
    [Google Scholar]
  79. 78.
    Joo Y, Schuman MC, Goldberg JK, Kim SG, Yon F et al. 2018. Herbivore-induced volatile blends with both “fast” and “slow” components provide robust indirect defence in nature. Funct. Ecol. 32:136–49
    [Google Scholar]
  80. 79.
    Joo Y, Schuman MC, Goldberg JK, Wissgott A, Kim S-G, Baldwin IT. 2019. Herbivory elicits changes in green leaf volatile production via jasmonate signaling and the circadian clock. Plant Cell Environ. 42:3972–82
    [Google Scholar]
  81. 80.
    Kalske A, Shiojiri K, Uesugi A, Sakata Y, Morrell K, Kessler A. 2019. Insect herbivory selects for volatile-mediated plant-plant communication. Curr. Biol. 29:183128–33.e3
    [Google Scholar]
  82. 81.
    Kappers IF, Aharoni A, van Herpen TWJM, Luckerhoff LLP, Dicke M, Bouwmeester HJ. 2005. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–72
    [Google Scholar]
  83. 82.
    Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW. 2000. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71
    [Google Scholar]
  84. 83.
    Karban R, Shiojiri K, Ishizaki S. 2010. An air transfer experiment confirms the role of volatile cues in communication between plants. Am. Nat. 176:3381–84
    [Google Scholar]
  85. 84.
    Karban R, Yang LH, Edwards KF. 2014. Volatile communication between plants that affects herbivory: a meta-analysis. Ecol. Lett. 17:144–52
    [Google Scholar]
  86. 85.
    Kessler A, Baldwin IT. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:55112141–44
    [Google Scholar]
  87. 86.
    Kessler A, Halitschke R, Diezel C, Baldwin IT. 2006. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:2280–92
    [Google Scholar]
  88. 87.
    Kessler A, Heil M. 2011. The multiple faces of indirect defences and their agents of natural selection. Funct. Ecol. 25:2348–57
    [Google Scholar]
  89. 88.
    Khosla C, Keasling JD. 2003. Metabolic engineering for drug discovery and development. Nat. Rev. Drug Discov. 2:1019–25
    [Google Scholar]
  90. 89.
    Koppmann R 2007. Volatile Organic Compounds in the Atmosphere Oxford, UK: Blackwell Publ.
  91. 90.
    Kost C. 2008. Chemical communication. Encyclopedia of Ecology SE Jørgensen, BD Fath 557–75. Oxford, UK: Academic
    [Google Scholar]
  92. 91.
    Lang J, Chidawanyika F, Khan ZR, Schuman MC. 2022. Ecological chemistry of pest control in push-pull intercropping systems: what we know, and where to go?. Chimia 76:11906
    [Google Scholar]
  93. 92.
    Lazazzara V, Avesani S, Robatscher P, Oberhuber M, Pertot I et al. 2022. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors. J. Exp. Bot. 73:2529–54
    [Google Scholar]
  94. 93.
    Lee SC, Lee JW, Lee DH, Huh MJ, Nam I et al. 2022. Identification of sex pheromone components of Korean Dioryctria abietella (Lepidoptera: Pyralidae) population and synergism of pheromone and pine cone volatile blends. J. Econ. Entomol. 115:1178–86
    [Google Scholar]
  95. 94.
    Lerdau M, Gray D. 2003. Ecology and evolution of light-dependent and light-independent phytogenic volatile organic carbon. New Phytol. 157:2199–211
    [Google Scholar]
  96. 95.
    Li Y, Zhao P, Yin C-Y, Liu X-X, Zhang Q-W. 2010. Attraction of Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) by several plant volatiles and aggregation pheromone. Acta Entomol. Sin. 53:7734–40
    [Google Scholar]
  97. 96.
    Lin PA, Chen Y, Chaverra-Rodriguez D, Heu CC, Zainuddin NB et al. 2021. Silencing the alarm: An insect salivary enzyme closes plant stomata and inhibits volatile release. New Phytol. 230:2793–803
    [Google Scholar]
  98. 97.
    Maffei M. 2010. Sites of synthesis, biochemistry and functional role of plant volatiles. S. Afr. J. Bot. 76:4612–31
    [Google Scholar]
  99. 98.
    Maoz I, Lewinsohn E, Gonda I. 2022. Amino acids metabolism as a source for aroma volatiles biosynthesis. Curr. Opin. Plant Biol. 67:102221
    [Google Scholar]
  100. 99.
    Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CM et al. 2016. Recognizing plant defense priming. Trends Plant Sci. 21:10818–22
    [Google Scholar]
  101. 100.
    Matsui K. 2006. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 9:274–80
    [Google Scholar]
  102. 101.
    Matsui K, Sugimoto K, Mano J, Ozawa R, Takabayashi J. 2012. Differential metabolism of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements. PLOS ONE 7:4e36433
    [Google Scholar]
  103. 102.
    Misztal P, Hewitt C, Wildt J, Blande J, Eller A et al. 2015. Atmospheric benzenoid emissions from plants rival those from fossil fuels. Sci. Rep. 5:112064
    [Google Scholar]
  104. 103.
    Mita G, Quarta A, Fasano P, De Paolis A, Di Sansebastiano GP et al. 2005. Molecular cloning and characterization of an almond 9-hydroperoxide lyase, a new CYP74 targeted to lipid bodies. J. Exp. Bot. 56:4192321–33
    [Google Scholar]
  105. 104.
    Mizutani J. 1999. Selected allelochemicals.. Crit. Rev. Plant Sci. 18:5653–71
    [Google Scholar]
  106. 105.
    Monteith JL, Unsworth MH 2013. Micrometeorology. Principles of Environmental Physics: Plant, Animals, and the Atmosphere JL Monteith, MH Unsworth 289–320. Oxford, UK: Elsevier
    [Google Scholar]
  107. 106.
    Nakashima A, von Reuss SH, Tasaka H, Nomura M, Mochizuki S et al. 2013. Traumatin- and dinortraumatin-containing galactolipids in Arabidopsis: their formation in tissue-disrupted leaves as counterparts of green leaf volatiles. J. Biol. Chem. 288:3626078–88
    [Google Scholar]
  108. 107.
    Ninkovic V, Dahlin I, Vucetic A, Petrovic-Obradovic O, Glinwood R, Webster B. 2013. Volatile exchange between undamaged plants – a new mechanism affecting insect orientation in intercropping. PLOS ONE 8:7e69431
    [Google Scholar]
  109. 108.
    Onosato H, Fujimoto G, Higami T, Sakamoto T, Yamada A et al. 2022. Sustained defense response via volatile signaling and its epigenetic transcriptional regulation. Plant Physiol. 189:2922–33
    [Google Scholar]
  110. 109.
    Paschold A, Halitschke R, Baldwin IT. 2006. Using “mute” plants to translate volatile signals. Plant J. 45:275–91
    [Google Scholar]
  111. 110.
    Pearse IS, Gee WS, Beck JJ. 2013. Headspace volatiles from 52 oak species advertise induction, species identity, and evolution, but not defense. J. Chem. Ecol. 39:190–100
    [Google Scholar]
  112. 111.
    Pearse IS, Porensky LM, Yang LH, Stanton ML, Karban R et al. 2012. Complex consequences of herbivory and interplant cues in three annual plants. PLOS ONE 7:5e38105
    [Google Scholar]
  113. 112.
    Pichersky E, Noel JP, Dudareva N. 2006. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science 311:5762808–11
    [Google Scholar]
  114. 113.
    Pickett JA, Khan ZR. 2016. Plant volatile-mediated signalling and its application in agriculture: successes and challenges. New Phytol. 212:4856–70
    [Google Scholar]
  115. 114.
    Pinto D, Blande J, Souza S, Nerg AM, Holopainen J. 2010. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J. Chem. Ecol. 36:122–34
    [Google Scholar]
  116. 115.
    Poelman EH, Bruinsma M, Zhu F, Weldegergis BT, Boursault AE et al. 2012. Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host. PLOS Biol. 10:11e1001435
    [Google Scholar]
  117. 116.
    Preston CA, Laue G, Baldwin IT. 2001. Methyl jasmonate is blowing in the wind, but can it act as a plant-plant airborne signal?. Biochem. Syst. Ecol. 29:1007–23
    [Google Scholar]
  118. 117.
    Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE. 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65
    [Google Scholar]
  119. 118.
    Qualley A, Dudareva N. 2008. Aromatic volatiles and their involvement in plant defense. Induced Plant Resistance to Herbivory A Schaller 409–32. Dordrecht, Neth: Springer
    [Google Scholar]
  120. 119.
    Radulović N, Denić M, Stojanović-Radić Z. 2010. Antimicrobial phenolic abietane diterpene from Lycopus europaeus L. (Lamiaceae). Bioorg. Med. Chem. Lett. 20:174988–91
    [Google Scholar]
  121. 120.
    Raguso RA. 2016. More lessons from linalool: insights gained from a ubiquitous floral volatile. Curr. Opin. Plant Biol. 32:31–36
    [Google Scholar]
  122. 121.
    Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S et al. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:7034732–37
    [Google Scholar]
  123. 122.
    Rhoades DF. 1983. Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. Plant Resistance to Insects P Hedin 55–68. Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  124. 123.
    Rodríguez-Concepción M. 2006. Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem. Rev. 5:11–15
    [Google Scholar]
  125. 124.
    Schiestl FP. 2010. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13:5643–56
    [Google Scholar]
  126. 125.
    Schmidt-Büsser D, von Arx M, Guerin P 2009. Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone. J. Comp. Physiol. A 195:9853–64
    [Google Scholar]
  127. 126.
    Schowalter TD 2022. Resource acquisition. Insect Ecology TD Schowalter 93–162. Cambridge, MA: Academic. , 5th ed..
    [Google Scholar]
  128. 127.
    Schuman MC, Allmann S, Baldwin IT. 2015. Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors. eLife 4:2008e04490
    [Google Scholar]
  129. 128.
    Schuman MC, Baldwin IT 2012. Asking the ecosystem if herbivory-inducible plant volatiles (HIPVs) have defensive functions. The Ecology of Plant Secondary Metabolites GR Iason, M Dicke, SE Hartley 287–307. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  130. 129.
    Schuman MC, Baldwin IT. 2018. Field studies reveal functions of chemical mediators in plant interactions. Chem. Soc. Rev. 47:145338–53
    [Google Scholar]
  131. 130.
    Schuman MC, Barthel K, Baldwin IT 2012. Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. eLife 1:1e00007
    [Google Scholar]
  132. 131.
    Schuman MC, Palmer-Young EC, Schmidt A, Gershenzon J, Baldwin IT. 2014. Ectopic terpene synthase expression enhances sesquiterpene emission in Nicotiana attenuata without altering defense or development of transgenic plants or neighbors. Plant Physiol. 166:2779–97
    [Google Scholar]
  133. 132.
    Schuman MC, Valim HA, Joo Y. 2016. Temporal dynamics of plant volatiles: mechanistic bases and functional consequences. Deciphering Chemical Language of Plant Communication JD Blande, R Glinwood 3–34. Cham, Switz: Springer
    [Google Scholar]
  134. 133.
    Seigler D. 1998. Plant Secondary Metabolism Boston: Springer
  135. 134.
    Selvaraj G. 2015. Flying whispers of inter-kingdom conversation: a complementary perspective of plant and bacterial volatile signals. Adv. Bot. Res. 75:285–310
    [Google Scholar]
  136. 135.
    Sharifi R, Ryu CM. 2021. Social networking in crop plants: wired and wireless cross-plant communications. Plant Cell Environ. 44:41095–110
    [Google Scholar]
  137. 136.
    Sharkey TD, Wiberley AE, Donohue AR. 2008. Isoprene emission from plants: why and how. Ann. Bot. 101:15–18
    [Google Scholar]
  138. 137.
    Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G. 2006. Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. PNAS 103:4516672–76
    [Google Scholar]
  139. 138.
    Shiojiri K, Ozawa R, Kugimiya S, Uefune M, van Wijk M et al. 2010. Herbivore-specific, density-dependent induction of plant volatiles: honest or “cry wolf” signals?. PLOS ONE 5:8e12161
    [Google Scholar]
  140. 139.
    Song J, Lee G, Jung J, Moon JK, Kim SG. 2022. Effect of soybean volatiles on the behavior of the bean bug, Riptortus pedestris. J. Chem. Ecol. 48:2207–18
    [Google Scholar]
  141. 140.
    Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S et al. 2014. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. PNAS 111:197144–49
    [Google Scholar]
  142. 141.
    Sugimoto K, Matsui K, Takabayashi J 2016. Uptake and conversion of volatile compounds in plant-plant communication. Deciphering Chemical Language of Plant Communication JD Blande, R Glinwood 305–16. Signal. Commun. Plants. Cham Switz: Springer
    [Google Scholar]
  143. 142.
    Tissier A, Morgan JA, Dudareva N. 2017. Plant volatiles: going “in” but not “out” of trichome cavities. Trends Plant Sci. 22:11930–38
    [Google Scholar]
  144. 143.
    Turlings TC, Erb M. 2018. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63:433–52
    [Google Scholar]
  145. 144.
    Turlings TC, Hiltpold I, Rasmann S. 2012. The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 358:151–60
    [Google Scholar]
  146. 145.
    van de Schoot R, de Bruin J, Schram R, Zahedi P, de Boer J et al. 2021. An open source machine learning framework for efficient and transparent systematic reviews. Nat. Mach. Intell. 3:2125–33
    [Google Scholar]
  147. 146.
    Van Poecke RM, Posthumus MA, Dicke M. 2001. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J. Chem. Ecol. 27:101911–28
    [Google Scholar]
  148. 147.
    Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F et al. 2001. Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. PNAS 98:148139–44
    [Google Scholar]
  149. 148.
    Vandermoten S, Mescher MC, Francis F, Haubruge E, Verheggen FJ. 2012. Aphid alarm pheromone: an overview of current knowledge on biosynthesis and functions. Insect Biochem. Mol. Biol. 42:3155–63
    [Google Scholar]
  150. 149.
    Vet LEM, Dicke M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–72
    [Google Scholar]
  151. 150.
    Vickers CE, Gershenzon J, Lerdau MT, Loreto F. 2009. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat. Chem. Biol. 5:5283–91
    [Google Scholar]
  152. 151.
    Vogt T. 2010. Phenylpropanoid biosynthesis.. Mol. Plant 3:12–20
    [Google Scholar]
  153. 152.
    Vucetic A, Dahlin I, Petrovic-Obradovic O, Glinwood R, Webster B, Ninkovic V. 2014. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission. Plant Signal. Behav. 9:e29517
    [Google Scholar]
  154. 153.
    Walter MH, Floss DS, Strack D. 2010. Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232:1–17
    [Google Scholar]
  155. 154.
    Wang F, Deng J, Schal C, Lou Y, Zhou G et al. 2016. Non-host plant volatiles disrupt sex pheromone communication in a specialist herbivore. Sci. Rep. 6:132666
    [Google Scholar]
  156. 155.
    Wasternack C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100:4681–97
    [Google Scholar]
  157. 156.
    Weber DC, Blackburn MB, Jaronski ST 2022. Biological and behavioral control of potato insect pests. Insect Pests of Potato: Global Perspectives on Biology and Management A Alyokhin, SI Rondon, Y Gao 231–76. London: Academic. , 2nd ed..
    [Google Scholar]
  158. 157.
    Wegener R, Schulz S. 2002. Identification and synthesis of homoterpenoids emitted from elm leaves after elicitation by beetle eggs. Tetrahedron 58:315–19
    [Google Scholar]
  159. 158.
    Widhalm JR, Jaini R, Morgan JA, Dudareva N. 2015. Rethinking how volatiles are released from plant cells. Trends Plant Sci. 20:545–50
    [Google Scholar]
  160. 159.
    Wilson JK, Kessler A, Woods HA. 2015. Noisy communication via airborne infochemicals. BioScience 65:7667–77
    [Google Scholar]
  161. 160.
    Wilson JK, Woods HA, Kessler A. 2018. High levels of abiotic noise in volatile organic compounds released by a desert perennial: implications for the evolution and ecology of airborne chemical communication. Oecologia 188:2367–79
    [Google Scholar]
  162. 161.
    Yáñez-Serrano A, Fasbender L, Kreuzwieser J, Dubbert D, Haberstroh S et al. 2018. Volatile diterpene emission by two Mediterranean Cistaceae shrubs. Sci. Rep. 8:16855
    [Google Scholar]
  163. 162.
    Yon F, Joo Y, Llorca LC, Rothe E, Baldwin IT et al. 2016. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers. New Phytol. 209:1058–66
    [Google Scholar]
  164. 163.
    Zhang C, Chen X, Lee RTC, T R, Maurer-Stroh S, Rühl M 2021. Bioinformatics-aided identification, characterization and applications of mushroom linalool synthases. Commun. Biol. 4:1223
    [Google Scholar]
  165. 164.
    Zu P, Boege K, Del-Val E, Schuman MC, Stevenson PC et al. 2020. Information arms race explains plant-herbivore chemical communication in ecological communities. Science 368:64971377–81
    [Google Scholar]
  166. 165.
    Zu P-J, García-García R, Schuman MC, Saavedra S, Melián CJ. 2022. Plant–insect chemical communication in ecological communities: an information theory perspective. J. Syst. Evol. https://doi.org/10.1111/jse.12841
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-arplant-040121-114908
Loading
/content/journals/10.1146/annurev-arplant-040121-114908
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error