1932

Abstract

Living structures constantly interact with the biotic and abiotic environment by sensing and responding via specialized functional parts. In other words, biological bodies embody highly functional machines and actuators. What are the signatures of engineering mechanisms in biology? In this review, we connect the dots in the literature to seek engineering principles in plant structures. We identify three thematic motifs—bilayer actuator, slender-bodied functional surface, and self-similarity—and provide an overview of their structure–function relationships. Unlike human-engineered machines and actuators, biological counterparts may appear suboptimal in design, loosely complying with physical theories or engineering principles. We postulate what factors may influence the evolution of functional morphology and anatomy to dissect and comprehend better the why behind the biological forms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-061422-094751
2023-05-22
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-061422-094751.html?itemId=/content/journals/10.1146/annurev-arplant-061422-094751&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abraham Y, Dong Y, Aharoni A, Elbaum R. 2018. Mapping of cell wall aromatic moieties and their effect on hygroscopic movement in the awns of stork's bill. Cellulose 25:73827–41
    [Google Scholar]
  2. 2.
    Abraham Y, Elbaum R. 2013. Hygroscopic movements in Geraniaceae: the structural variations that are responsible for coiling or bending. New Phytol. 199:2584–94
    [Google Scholar]
  3. 3.
    Abraham Y, Tamburu C, Klein E, Dunlop JWCC, Fratzl P et al. 2012. Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork's bill awn. J. R. Soc. Interface 9:69640–47
    [Google Scholar]
  4. 4.
    Allen R, Wardrop AB. 1964. The opening and shedding mechanism of the female cones of Pinus radiata. Aust. J. Bot. 12:125–34
    [Google Scholar]
  5. 5.
    Amada G, Kobayashi K, Izuno A, Mukai M, Ostertag R et al. 2020. Leaf trichomes in Metrosideros polymorpha can contribute to avoiding extra water stress by impeding gall formation. Ann. Bot. 125:3533–42
    [Google Scholar]
  6. 6.
    Amada G, Onoda Y, Ichie T, Kitayama K. 2017. Influence of leaf trichomes on boundary layer conductance and gas-exchange characteristics in Metrosideros polymorpha (Myrtaceae). Biotropica 49:4482–92
    [Google Scholar]
  7. 7.
    Andrews FM. 1929. The effect of temperature on flowers. Plant Physiol. 4:281–84
    [Google Scholar]
  8. 8.
    Armon S, Efrati E, Kupferman R, Sharon E 2011. Geometry and mechanics in the opening of chiral seed pods. Science 333:60501726–30
    [Google Scholar]
  9. 9.
    Asgari M, Brulé V, Western TL, Pasini D. 2020. Nano-indentation reveals a potential role for gradients of cell wall stiffness in directional movement of the resurrection plant Selaginella lepidophylla. Sci. Rep. 10:1506
    [Google Scholar]
  10. 10.
    Ashby MF. 2011. Materials Selection in Mechanical Design Amsterdam: Elsevier. , 4th ed..
  11. 11.
    Ashby MF, Gibson LJ, Wegst U, Olive R. 1995. The mechanical properties of natural materials. I. Material property charts. Proc. R. Soc. London. A Math. 450:123–40
    [Google Scholar]
  12. 12.
    Atamian HS, Creux NM, Brown EA, Garner AG, Blackman BK, Harmer SL. 2016. Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits. Science 353:6299587–90
    [Google Scholar]
  13. 13.
    Bar-Sinai Y, Julien J-D, Sharon E, Armon S, Nakayama N et al. 2016. Mechanical stress induces remodeling of vascular networks in growing leaves. PLOS Comput. Biol. 12:4e1004819
    [Google Scholar]
  14. 14.
    Barthlott W, Neinhuis C. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:11–8
    [Google Scholar]
  15. 15.
    Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M et al. 2010. The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv. Mater. 22:212325–28
    [Google Scholar]
  16. 16.
    Beauzamy L, Derr J, Boudaoud A. 2015. Quantifying hydrostatic pressure in plant cells by using indentation with an atomic force microscope. Biophys. J. 108:102448–56
    [Google Scholar]
  17. 17.
    Beauzamy L, Nakayama N, Boudaoud A. 2014. Flowers under pressure: ins and outs of turgor regulation in development. Ann. Bot. 114:71517–33
    [Google Scholar]
  18. 18.
    Bemis SM, Torii KU. 2007. Autonomy of cell proliferation and developmental programs during Arabidopsis aboveground organ morphogenesis. Dev. Biol. 304:1367–81
    [Google Scholar]
  19. 19.
    Bickford CP. 2016. Ecophysiology of leaf trichomes. Funct. Plant Biol. 43:9807–14
    [Google Scholar]
  20. 20.
    Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H et al. 2008. A conserved molecular framework for compound leaf development. Science 322:59091835–39
    [Google Scholar]
  21. 21.
    Böhner P. 1933. Über die thermonastischen Blütenbewegungen bei der Tulpe. Z. für Bot. 26:65–107
    [Google Scholar]
  22. 22.
    Böhner P. 1934. Zur Thermonastie der Tulpenblüte. Ber. Dtsch. Bot. Ges. 52:6336–47
    [Google Scholar]
  23. 23.
    Bowling AJ, Vaughn KC. 2009. Gelatinous fibers are widespread in coiling tendrils and twining vines. Am. J. Bot. 96:4719–27
    [Google Scholar]
  24. 24.
    Bowman JL, Eshed Y, Baum SF. 2002. Establishment of polarity in angiosperm lateral organs. Trends Genet 18:3134–41
    [Google Scholar]
  25. 25.
    Brewer CA, Smith WK, Vogelmann TC. 1991. Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant. Cell Environ. 14:9955–62
    [Google Scholar]
  26. 26.
    Broetto D. 1970. Bimetallic thermostat US Patent US3493911
  27. 27.
    Bünning E. 1929. Über die thermonastischen und thigmonastischen Blütenbewegungen. Planta 8:5698–716
    [Google Scholar]
  28. 28.
    Burgert I, Fratzl P. 2009. Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls. Integr. Comp. Biol. 49:169–79
    [Google Scholar]
  29. 29.
    Burri JT, Saikia E, Läubli NF, Vogler H, Wittel FK et al. 2020. A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. PLOS Biol. 18:7e3000740
    [Google Scholar]
  30. 30.
    Cheng C, Yu Q, Wang Y, Wang H, Dong Y et al. 2021. Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (Rosa hybrida). Plant Cell 33:41229–51
    [Google Scholar]
  31. 31.
    Cohn-Byk W, von Pap A. 1930. Bimetallic Thermostat US Patent US1864483A
  32. 32.
    Colin L, Chevallier A, Tsugawa S, Gacon F, Godin C et al. 2020. Cortical tension overrides geometrical cues to orient microtubules in confined protoplasts. PNAS 117:5132731–38
    [Google Scholar]
  33. 33.
    Corson F. 2010. Fluctuations and redundancy in optimal transport networks. Phys. Rev. Lett. 104:4048703
    [Google Scholar]
  34. 34.
    Couturier E, Brunel N, Douady S, Nakayama N. 2012. Abaxial growth and steric constraints guide leaf folding and shape in Acer pseudoplatanus. Am. J. Bot. 99:81289–99
    [Google Scholar]
  35. 35.
    Crofts SB, Anderson PSL. 2018. The influence of cactus spine surface structure on puncture performance and anchoring ability is tuned for ecology. Proc. R. Soc. B 285:189120182280
    [Google Scholar]
  36. 36.
    Cummins C, Seale M, Macente A, Certini D, Mastropaolo E et al. 2018. A separated vortex ring underlies the flight of the dandelion. Nature 562:7727414–18
    [Google Scholar]
  37. 37.
    Dawson C, Vincent JFV, Rocca A-M. 1997. How pine cones open. Nature 390:668
    [Google Scholar]
  38. 38.
    Dawson TE, Goldsmith GR. 2018. The value of wet leaves. New Phytol. 219:41156–69
    [Google Scholar]
  39. 39.
    Dumais J, Forterre Y. 2011.. “ Vegetable dynamicks”: The role of water in plant movements. Annu. Rev. Fluid Mech. 44:453–78
    [Google Scholar]
  40. 40.
    Efroni I, Eshed Y, Lifschitz E. 2010. Morphogenesis of simple and compound leaves: a critical review. Plant Cell 22:41019–32
    [Google Scholar]
  41. 41.
    Elbaum R, Abraham Y. 2014. Insights into the microstructures of hygroscopic movement in plant seed dispersal. Plant Sci. 223:124–33
    [Google Scholar]
  42. 42.
    Elbaum R, Gorb S, Fratzl P. 2008. Structures in the cell wall that enable hygroscopic movement of wheat awns. J. Struct. Biol. 164:1101–7
    [Google Scholar]
  43. 43.
    Elbaum R, Zaltzman L, Burgert I, Fratzl P. 2007. The role of wheat awns in the seed dispersal unit. Science 316:5826884–86
    [Google Scholar]
  44. 44.
    Eloy C. 2011. Leonardo's rule, self-similarity, and wind-induced stresses in trees. Phys. Rev. Lett. 107:25258101
    [Google Scholar]
  45. 45.
    Eloy C, Fournier M, Lacointe A, Moulia B. 2017. Wind loads and competition for light sculpt trees into self-similar structures. Nat. Commun. 8:11014
    [Google Scholar]
  46. 46.
    Ennos R. 2012. Solid biomechanics Princeton, NJ: Princeton Univ. Press
  47. 47.
    Evangelista D, Hotton S, Dumais J. 2011. The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). J. Exp. Biol. 214:4521–29
    [Google Scholar]
  48. 48.
    Fahn A, Zohary M. 1955. On the pericarpial structure of the legumen, its evolution and relation to dehiscence. Phytomorphology 5:1–499–111
    [Google Scholar]
  49. 49.
    Farmer JB. 1902. On the mechanism which is concerned in effecting the opening and closing of tulip flowers. New Phytol. 1:356–58
    [Google Scholar]
  50. 50.
    Flueret-Lassard P. 1988. Structural and ultrastructural features of cortical cells in motor organs of sensitive plants. Biol. Rev. 63:11–22
    [Google Scholar]
  51. 51.
    Forterre Y. 2013. Slow, fast and furious: understanding the physics of plant movements. J. Exp. Bot. 64:154745–60
    [Google Scholar]
  52. 52.
    Forterre Y, Skotheim J, Mahadevan L, Dumais J. 2005. How the Venus flytrap snaps. Nature 433:January421–25
    [Google Scholar]
  53. 53.
    Fromm J, Eschrich W. 1988. Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. Trees 2:118–24
    [Google Scholar]
  54. 54.
    Ghosh S, Körte A, Serafini G, Yadav V, Rodenfels J. 2022. Developmental energetics: energy expenditure, budgets and metabolism during animal embryogenesis. Semin. Cell Dev. Biol. 138:83–93
    [Google Scholar]
  55. 55.
    Gifford EM, Foster AS. 1989. Morphology and Evolution of Vascular Plants New York: W. H. Freeman
  56. 56.
    Greenhill AG. 1881. Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and of the greatest height to which a tree of given proportions can grow. Proc. Camb. Philol. Soc. 4:65–73
    [Google Scholar]
  57. 57.
    Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M et al. 2008. Developmental patterning by mechanical signals in Arabidopsis. Science 322:59081650–55
    [Google Scholar]
  58. 58.
    Hamant O, Inoue D, Bouchez D, Dumais J, Mjolsness E. 2019. Are microtubules tension sensors?. Nat. Commun. 10:12360
    [Google Scholar]
  59. 59.
    Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM. 2007. Plant structural traits and their role in anti-herbivore defence. Perspect. Plant Ecol. Evol. Syst. 8:4157–78
    [Google Scholar]
  60. 60.
    Harlow WM, Côté WA, Day AC. 1964. The opening mechanism of pine cone scales. J. For. 62:8538–40
    [Google Scholar]
  61. 61.
    Hofhuis H, Moulton D, Lessinnes T, Routier-Kierzkowska A-LL, Bomphrey RJJ et al. 2016. Morphomechanical innovation drives explosive seed dispersal. Cell 166:1222–33
    [Google Scholar]
  62. 62.
    Holden DJ. 1956. Factors in dehiscence of the flax fruit. Bot. Gaz. 117:4294–309
    [Google Scholar]
  63. 63.
    Jensen KH, Knoblauch J, Christensen AH, Haaning KS, Park K. 2020. Universal elastic mechanism for stinger design. Nat. Phys. 16:101074–78
    [Google Scholar]
  64. 64.
    Jost L. 1907. Movement resulting from swelling and contraction and from cohesion of imbibition water. Lectures on Plant Physiology RJH Gibson 405–17. Oxford, UK: Clarendon
    [Google Scholar]
  65. 65.
    Jost L. 1907. Nyctitropism. Lectures on Plant Physiology RJH Gibson 500–12. Oxford, UK: Clarendon
    [Google Scholar]
  66. 66.
    Katifori E, Szöllősi GJ, Magnasco MO. 2010. Damage and fluctuations induce loops in optimal transport networks. Phys. Rev. Lett. 104:4048704
    [Google Scholar]
  67. 67.
    Kim KW. 2018. Peltate trichomes on biogenic silvery leaves of Elaeagnus umbellata. Microsc. Res. Tech. 81:7789–95
    [Google Scholar]
  68. 68.
    Kim M, Yoo S, Jeong HE, Kwak MK. 2022. Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering. Nat. Commun. 13:5181
    [Google Scholar]
  69. 69.
    Ko J-H, Han K-H, Park S, Yang J 2004. Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol. 135:21069–83
    [Google Scholar]
  70. 70.
    Koller D. 2011. The Restless Plant Cambridge, MA: Harvard Univ. Press
  71. 71.
    Lamont B. 1983. Root hair dimensions and surface/volume/weight ratios of roots with the aid of scanning electron microscopy. Plant Soil 74:1149–52
    [Google Scholar]
  72. 72.
    Landrein B, Hamant O. 2013. How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. Plant J. 75:2324–38
    [Google Scholar]
  73. 73.
    Le Thanh T, Hufnagel B, Soriano A, Divol F, Brottier L et al. 2021. Dynamic development of white lupin rootlets along a cluster root. Front. Plant Sci. 12:738172
    [Google Scholar]
  74. 74.
    Lenz AK, Bauer U, Ruxton GD. 2022. An ecological perspective on water shedding from leaves. J. Exp. Bot. 73:41176–89
    [Google Scholar]
  75. 75.
    Libonati F, Buehler MJ. 2017. Advanced structural materials by bioinspiration. Adv. Eng. Mater. 19:51600787
    [Google Scholar]
  76. 76.
    Lisci M, Pacini E. 2014. Fruit and seed structural characteristics and seed dispersal in Mercurialis annua L. (Euphorbiaceae). Acta Soc. Bot. Pol. 66:3–4379–86
    [Google Scholar]
  77. 77.
    Liu H, Zhou LH, Jiao J, Liu S, Zhang Z et al. 2016. Gradient mechanical properties facilitate Arabidopsis trichome as mechanosensor. ACS Appl. Mater. Interfaces 8:159755–61
    [Google Scholar]
  78. 78.
    Loik ME. 2008. The effect of cactus spines on light interception and Photosystem II for three sympatric species of Opuntia from the Mojave Desert. Physiol. Plant. 134:187–98
    [Google Scholar]
  79. 79.
    Mandelbrot BB. 1983. The Fractal Geometry of Nature New York: W. H. Freeman and Co.
  80. 80.
    Marmottant P, Ponomarenko A, Bienaimé D. 2013. The walk and jump of Equisetum spores. Proc. R. Soc. B 280:177020131465
    [Google Scholar]
  81. 81.
    Marusic I, Broomhall S. 2021. Leonardo da Vinci and fluid mechanics. Annu. Rev. Fluid Mech. 53:11–25
    [Google Scholar]
  82. 82.
    Matsumura M, Nomoto M, Itaya T, Aratani Y, Iwamoto M et al. 2022. Mechanosensory trichome cells evoke a mechanical stimuli–induced immune response in Arabidopsis thaliana. Nat. Commun. 13:11216
    [Google Scholar]
  83. 83.
    Mauseth JD. 2006. Structure–function relationships in highly modified shoots of Cactaceae. Ann. Bot. 98:5901–26
    [Google Scholar]
  84. 84.
    McConnell JR, Barton MK. 1998. Leaf polarity and meristem formation in Arabidopsis. Development 125:152935–42
    [Google Scholar]
  85. 85.
    McMahon TA, Kronauer RE. 1976. Tree structures: deducing the principle of mechanical design. J. Theor. Biol. 59:2443–66
    [Google Scholar]
  86. 86.
    Mershon JP, Becker M, Bickford CP. 2015. Linkage between trichome morphology and leaf optical properties in New Zealand alpine Pachycladon (Brassicaceae). New Zeal. J. Bot. 53:3175–82
    [Google Scholar]
  87. 87.
    Monsi M. 1943. Untersuchungen über den Mechanismus der Schleuderbewegung der Sojabohnen-Hülse. Jpn. J. Bot 12:437–74
    [Google Scholar]
  88. 88.
    Moog PR, van der Kooij TAW, Brüggemann W, Schiefelbein JW, Kuiper PJC. 1995. Responses to iron deficiency in Arabidopsis thaliana: The Turbo iron reductase does not depend on the formation of root hairs and transfer cells. Planta 195:4505–13
    [Google Scholar]
  89. 89.
    Moore J, Gardiner B, Sellier D 2018. Tree mechanics and wind loading. Plant Biomechanics: From Structure to Function at Multiple Scales A Geitmann, J Gril 79–106. Cham, Switz: Springer Intern. Publ.
    [Google Scholar]
  90. 90.
    Mozingo HN, Klein P, Zeevi Y, Lewis ER. 1970. Venus's flytrap observations by scanning electron microscopy. Am. J. Bot. 57:5593–98
    [Google Scholar]
  91. 91.
    Murbach L. 1900. Note on the mechanics of the seed-burying awns of Stipa avenacea. Bot. Gaz. 30:2113–17
    [Google Scholar]
  92. 92.
    Nakayama H, Nakayama N, Seiki S, Kojima M, Sakakibara H et al. 2014. Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress. Plant Cell 26:124733–48
    [Google Scholar]
  93. 93.
    Nelson MR, Band LR, Dyson RJ, Lessinnes T, Wells DM et al. 2012. A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening. New Phytol. 196:41030–37
    [Google Scholar]
  94. 94.
    Niklas KJ. 1992. Plant Biomechanics: An Engineering Approach to Plant Form and Function Chicago: Univ. Chicago Press
  95. 95.
    Niklas KJ. 1994. The allometry of safety-factors for plant height. Am. J. Bot. 81:3345–51
    [Google Scholar]
  96. 96.
    Niklas KJ. 1998. A statistical approach to biological factors of safety: bending and shearing in Psilotum axes. Ann. Bot. 82:2177–87
    [Google Scholar]
  97. 97.
    Niklas KJ, Spatz H-C. 2004. Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. PNAS 101:4415661–63
    [Google Scholar]
  98. 98.
    Oriani A, Scatena VL. 2009. The movement of involucral bracts of Syngonanthus elegans (Eriocaulaceae-Poales): anatomical and ecological aspects. Flora Morphol. Distrib. Funct. Ecol. Plants 204:7518–27
    [Google Scholar]
  99. 99.
    Osmont KS, Sibout R, Hardtke CS. 2007. Hidden branches: developments in root system architecture. Annu. Rev. Plant Biol. 58:193–113
    [Google Scholar]
  100. 100.
    Pfeffer W. 1873. Physiologische Untersuchungen Leipzig, Ger.: W. Engelmann
  101. 101.
    Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T et al. 2009. Control of bud activation by an auxin transport switch. PNAS 106:4117431–36
    [Google Scholar]
  102. 102.
    Prusinkiewicz P, Lindenmayer A. 1990. The Algorithmic Beauty of Plants New York: Springer
  103. 103.
    Prusinkiewicz P. 2004. Self-similarity in plants: integrating mathematical and biological perspectives. Thinking in Patterns M Novak 103–18. Singapore: World Sci.
    [Google Scholar]
  104. 104.
    Puijalon S. 2005. Adaptations to increasing hydraulic stress: morphology, hydrodynamics and fitness of two higher aquatic plant species. J. Exp. Bot. 56:412777–86
    [Google Scholar]
  105. 105.
    Puijalon S, Bouma TJ, Douady CJ, van Groenendael J, Anten NPR et al. 2011. Plant resistance to mechanical stress: evidence of an avoidance–tolerance trade-off. New Phytol. 191:41141–49
    [Google Scholar]
  106. 106.
    Puijalon S, Léna J, Rivière N, Champagne J, Rostan J, Bornette G. 2008. Phenotypic plasticity in response to mechanical stress: hydrodynamic performance and fitness of four aquatic plant species. New Phytol 177:4907–17
    [Google Scholar]
  107. 107.
    Quan H, Pirosa A, Yang W, Ritchie RO, Meyers MA. 2021. Hydration-induced reversible deformation of the pine cone. Acta Biomater. 128:370–83
    [Google Scholar]
  108. 108.
    Rafsanjani A, Brulé V, Western TL, Pasini D. 2015. Hydro-responsive curling of the resurrection plant Selaginella lepidophylla. Sci. Rep. 5:18064
    [Google Scholar]
  109. 109.
    Reyssat E, Mahadevan L. 2009. Hygromorphs: from pine cones to biomimetic bilayers. J. R. Soc. Interface 6:39951–57
    [Google Scholar]
  110. 110.
    Roeder AHK, Chickarmane V, Cunha A, Obara B, Manjunath BS, Meyerowitz EM. 2010. Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLOS Biol. 8:5e1000367
    [Google Scholar]
  111. 111.
    Sachse R, Westermeier A, Mylo M, Nadasdi J, Bischoff M et al. 2020. Snapping mechanics of the Venus flytrap (Dionaea muscipula). PNAS 117:2716035–42
    [Google Scholar]
  112. 112.
    Sack L, Scoffoni C. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 198:4983–1000
    [Google Scholar]
  113. 113.
    Saikia E, Läubli NF, Burri JT, Rüggeberg M, Vogler H et al. 2021. Kinematics governing mechanotransduction in the sensory hair of the Venus flytrap. Int. J. Mol. Sci. 22:1280
    [Google Scholar]
  114. 114.
    Saikia E, Läubli NF, Vogler H, Rüggeberg M, Herrmann HJ et al. 2021. Mechanical factors contributing to the Venus flytrap's rate-dependent response to stimuli. Biomech. Model. Mechanobiol. 20:62287–97
    [Google Scholar]
  115. 115.
    Scarpella E, Barkoulas M, Tsiantis M. 2010. Control of leaf and vein development by auxin. Cold Spring Harb. Perspect. Biol. 2:1a001511
    [Google Scholar]
  116. 116.
    Scherzer S, Federle W, Al-Rasheid KAS, Hedrich R. 2019. Venus flytrap trigger hairs are micronewton mechano-sensors that can detect small insect prey. Nat. Plants 5:7670–75
    [Google Scholar]
  117. 117.
    Seale M, Cummins C, Viola IM, Mastropaolo E, Nakayama N. 2018. Design principles of hair-like structures as biological machines. J. R. Soc. Interface. 15:14220180206
    [Google Scholar]
  118. 118.
    Seale M, Kiss A, Bovio S, Viola IM, Mastropaolo E et al. 2022. Dandelion pappus morphing is actuated by radially patterned material swelling. Nat. Commun. 13:12498
    [Google Scholar]
  119. 119.
    Shimizu-Sato S, Mori H. 2001. Control of outgrowth and dormancy in axillary buds. Plant Physiol. 127:41405–13
    [Google Scholar]
  120. 120.
    Shtein I, Elbaum R, Bar-On B. 2016. The hygroscopic opening of sesame fruits is induced by a functionally graded pericarp architecture. Front. Plant Sci. 7:1501
    [Google Scholar]
  121. 121.
    Sibaoka T. 1991. Rapid plant movements triggered by action potentials. Bot. Mag. Tokyo. 104:173–95
    [Google Scholar]
  122. 122.
    Simons PJ. 1981. The role of electricity in plant movements. New Phytol. 87:111–37
    [Google Scholar]
  123. 123.
    Skotheim JM, Mahadevan L. 2005. Physical limits and design principles for plant and fungal movements. Science 308:57261308–10
    [Google Scholar]
  124. 124.
    Song Y, Park JO, Tanner L, Nagano Y, Rabinowitz JD, Shvartsman SY. 2019. Energy budget of Drosophila embryogenesis. Curr. Biol. 29:12R566–67
    [Google Scholar]
  125. 125.
    Stahlberg R. 2009. The phytomimetic potential of three types of hydration motors that drive nastic plant movements. Mech. Mater. 41:101162–71
    [Google Scholar]
  126. 126.
    Stanton ML, Galen C 1989. Consequences of flower heliotropism for reproduction in an alpine buttercup (Ranunculus adoneus). Oecologia 78:4477–85
    [Google Scholar]
  127. 127.
    Steeves TA, Sussex IM. 1989. Patterns in Plant Development Cambridge, UK: Cambridge Univ. Press
  128. 128.
    Steinbrinck C, Schinz H. 1908. Über die anatomische Ursache der hygrochastischen Bewegungen der sog. Jerichorosen und einiger anderer Wüstenpflanzen (Anastatica, Odontospermum, Geigeria, Fagonia, Zygophyllum). Flora oder Allg. Bot. Ztg. 98:4471–500
    [Google Scholar]
  129. 129.
    Suer S, Agusti J, Sanchez P, Schwarz M, Greb T. 2011. WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell 23:93247–59
    [Google Scholar]
  130. 130.
    Tanaka O, Tanaka Y, Wada H. 1988. Photonastic and thermonastic opening of capitulum in dandelion, Taraxacum officinale and Taraxacum japonicum. Bot. Mag. Tokyo 101:2103–10
    [Google Scholar]
  131. 131.
    Tian H, Jia Y, Niu T, Yu Q, Ding Z 2014. The key players of the primary root growth and development also function in lateral roots in Arabidopsis. Plant Cell Rep. 33:5745–53
    [Google Scholar]
  132. 132.
    Timoshenko S. 1925. Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11:3233–55
    [Google Scholar]
  133. 133.
    Timoshenko SP. 1983. History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures New York: Dover Publ.
  134. 134.
    Tran D, Petitjean H, Chebli Y, Geitmann A, Sharif-Naeini R. 2021. Mechanosensitive ion channels contribute to mechanically evoked rapid leaflet movement in Mimosa pudica. Plant Physiol. 187:31704–12
    [Google Scholar]
  135. 135.
    Ueno J. 1975. Moving mechanism of elater in the spore of Equisetum arvense. Jpn. J. Palynol. 15:67–71
    [Google Scholar]
  136. 136.
    Uphof JCT. 1920. Physiological anatomy of xerophytic selaginellas. New Phytol. 19:5/6101–31
    [Google Scholar]
  137. 137.
    Uphof JCT 1924. Hygrochastic movements in floral bracts of Ammobium, Acroclinium, Rhodanthe, and Helichrysum. Am. J. Bot. 11:3159–63
    [Google Scholar]
  138. 138.
    van Doorn WG, van Meeteren U. 2003. Flower opening and closure: a review. J. Exp. Bot. 54:3891801–12
    [Google Scholar]
  139. 139.
    Vaughn KC, Bowling AJ, Ruel KJ. 2011. The mechanism for explosive seed dispersal in Cardamine hirsuta (Brassicaceae). Am. J. Bot. 98:81276–85
    [Google Scholar]
  140. 140.
    Veen H, Sasidharan R. 2021. Shape shifting by amphibious plants in dynamic hydrological niches. New Phytol. 229:179–84
    [Google Scholar]
  141. 141.
    Wang B, Smith SM, Li J. 2018. Genetic regulation of shoot architecture. Annu. Rev. Plant Biol. 69:437–68
    [Google Scholar]
  142. 142.
    West GB, Brown JH, Enquist BJ. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:5309122–26
    [Google Scholar]
  143. 143.
    Witztum A, Schulgasser K. 1995. The mechanics of seed expulsion in Acanthaceae. J. Theor. Biol. 176:4531–42
    [Google Scholar]
  144. 144.
    Wood WMLL. 1953. Thermonasty in tulip and crocus flowers. J. Exp. Bot. 4:165–77
    [Google Scholar]
  145. 145.
    Zimmermann A. 1881. Ueber mechanische Einrichtungen zur Verbreitung der Samen und Früchte mit besonderer Berücksichtigung der Torsionserscheinungen. Jahrb. Wiss. Bot. 12:542–77
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-061422-094751
Loading
/content/journals/10.1146/annurev-arplant-061422-094751
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error