1932

Abstract

Mutation is the source of all heritable diversity, the essential material of evolution and breeding. While mutation rates are often regarded as constant, variability in mutation rates has been observed at nearly every level—varying across mutation types, genome locations, gene functions, epigenomic contexts, environmental conditions, genotypes, and species. This mutation rate variation arises from differential rates of DNA damage, repair, and transposable element activation and insertion that together produce what is measured by DNA mutation rates. We review historical and recent investigations into the causes and consequences of mutation rate variability in plants by focusing on the mechanisms shaping this variation. Emerging mechanistic models point to the evolvability of mutation rate variation across genomes via mechanisms that target DNA repair, shaping the diversification of plants at phenotypic and genomic scales.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070522-054109
2023-05-22
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-070522-054109.html?itemId=/content/journals/10.1146/annurev-arplant-070522-054109&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alpen EL. 1997. Radiation Biophysics Cambridge, MA: Academic. , 2nd ed..
  2. 2.
    Anderson CJ, Talmane L, Luft J, Nicholson MD, Connelly J et al. 2022. Strand-resolved mutagenicity of DNA damage and repair. bioRxiv 2022.06.10.495644. https://doi.org/10.1101/2022.06.10.495644
  3. 3.
    Baduel P, Leduque B, Ignace A, Gy I, Gil J Jr. et al. 2021. Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biol. 22:1138
    [Google Scholar]
  4. 4.
    Beale GH, Fabergé AC. 1941. Effect of temperature on the mutation rate of an unstable gene in Portulaca grandiflora. Nature 147:3725356–57
    [Google Scholar]
  5. 5.
    Belfield EJ, Brown C, Ding ZJ, Chapman L, Luo M et al. 2021. Thermal stress accelerates Arabidopsis thaliana mutation rate. Genome Res. 31:140–50Revealed that mutation rates increase in plants growing under elevated temperatures.
    [Google Scholar]
  6. 6.
    Belfield EJ, Ding ZJ, Jamieson FJC, Visscher AM, Zheng SJ et al. 2018. DNA mismatch repair preferentially protects genes from mutation. Genome Res. 28:166–74Demonstrated experimentally that in knockout lines of msh2, the mutation rate increases specifically in gene bodies.
    [Google Scholar]
  7. 7.
    Belfield EJ, Gan X, Mithani A, Brown C, Jiang C et al. 2012. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana. Genome Res. 22:71306–15
    [Google Scholar]
  8. 8.
    Benoit M, Drost H-G, Catoni M, Gouil Q, Lopez-Gomollon S et al. 2019. Environmental and epigenetic regulation of Rider retrotransposons in tomato. PLOS Genet. 15:9e1008370
    [Google Scholar]
  9. 9.
    Bourguet P, de Bossoreille S, López-González L, Pouch-Pélissier M-N, Gómez-Zambrano Á et al. 2018. A role for MED14 and UVH6 in heterochromatin transcription upon destabilization of silencing. Life Sci. Alliance 1:6e201800197
    [Google Scholar]
  10. 10.
    Boyko A, Zemp F, Filkowski J, Kovalchuk I. 2006. Double-strand break repair in plants is developmentally regulated. Plant Physiol. 141:2488–97
    [Google Scholar]
  11. 11.
    Britt AB. 2004. Repair of DNA damage induced by solar UV. Photosynth. Res. 81:2105–12
    [Google Scholar]
  12. 12.
    Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S et al. 2012. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:31242–55
    [Google Scholar]
  13. 13.
    Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH et al. 2022. Somatic mutation rates scale with lifespan across mammals. Nature 604:7906517–24
    [Google Scholar]
  14. 14.
    Cai X, Lin R, Liang J, King GJ, Wu J, Wang X. 2022. Transposable element insertion: a hidden major source of domesticated phenotypic variation in Brassica rapa. Plant Biotechnol. J. 20:1298–310
    [Google Scholar]
  15. 15.
    Cartledge JL, Barton LV, Blakeslee AF. 1936. Heat and moisture as factors in the increased mutation rate from Datura seeds. Proc. Am. Philos. Soc. 76:5663–85
    [Google Scholar]
  16. 16.
    Cartledge JL, Blakeslee AF. 1934. Mutation rate increased by aging seeds as shown by pollen abortion. PNAS 20:2103–10
    [Google Scholar]
  17. 17.
    Casati P, Campi M, Chu F, Suzuki N, Maltby D et al. 2008. Histone acetylation and chromatin remodeling are required for UV-B-dependent transcriptional activation of regulated genes in maize. Plant Cell 20:4827–42
    [Google Scholar]
  18. 18.
    Catlin NS, Josephs EB. 2022. The important contribution of transposable elements to phenotypic variation and evolution. Curr. Opin. Plant Biol. 65:102140
    [Google Scholar]
  19. 19.
    Chen X, Zhang J. 2013. No gene-specific optimization of mutation rate in Escherichia coli. Mol. Biol. Evol. 30:71559–62
    [Google Scholar]
  20. 20.
    Clark RM, Tavaré S, Doebley J. 2005. Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus. Mol. Biol. Evol. 22:112304–12
    [Google Scholar]
  21. 21.
    Cruz-Ramírez A, Díaz-Triviño S, Wachsman G, Du Y, Arteága-Vázquez M et al. 2013. A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer. PLOS Biol. 11:11e1001724 Corrigendum 2014. PLOS Biol. 12:10e1001997
    [Google Scholar]
  22. 22.
    Darwin C. 2003 (1859). On the Origin of Species London: Routledge
  23. 23.
    Davarinejad H, Huang Y-C, Mermaz B, LeBlanc C, Poulet A et al. 2022. The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication. Science 375:65861281–86
    [Google Scholar]
  24. 24.
    De Silva IU, McHugh PJ, Clingen PH, Hartley JA. 2000. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol. Cell. Biol. 20:217980–90
    [Google Scholar]
  25. 25.
    Dovrat D, Stodola JL, Burgers PMJ, Aharoni A. 2014. Sequential switching of binding partners on PCNA during in vitro Okazaki fragment maturation. PNAS 111:3914118–23
    [Google Scholar]
  26. 26.
    Edlinger B, Schlögelhofer P. 2011. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. J. Exp. Bot. 62:51545–63
    [Google Scholar]
  27. 27.
    Eyboulet F, Cibot C, Eychenne T, Neil H, Alibert O et al. 2013. Mediator links transcription and DNA repair by facilitating Rad2/XPG recruitment. Genes Dev. 27:232549–62
    [Google Scholar]
  28. 28.
    Eyre-Walker A, Keightley PD 2007. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8:8610–18
    [Google Scholar]
  29. 29.
    Fryxell KJ, Moon W-J. 2005. CpG mutation rates in the human genome are highly dependent on local GC content. Mol. Biol. Evol. 22:3650–58
    [Google Scholar]
  30. 30.
    Fryxell KJ, Zuckerkandl E. 2000. Cytosine deamination plays a primary role in the evolution of mammalian isochores. Mol. Biol. Evol. 17:91371–83
    [Google Scholar]
  31. 31.
    Furukawa T, Angelis KJ, Britt AB. 2015. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene. Front. Plant Sci. 6:357
    [Google Scholar]
  32. 32.
    Gill SS, Anjum NA, Gill R, Jha M, Tuteja N. 2015. DNA damage and repair in plants under ultraviolet and ionizing radiations. ScientificWorldJournal 2015:250158
    [Google Scholar]
  33. 33.
    Giustozzi M, Freytes SN, Jaskolowski A, Lichy M, Mateos J et al. 2022. Arabidopsis mediator subunit 17 connects transcription with DNA repair after UV-B exposure. Plant J. 110:1047–67
    [Google Scholar]
  34. 34.
    Golubov A, Yao Y, Maheshwari P, Bilichak A, Boyko A et al. 2010. Microsatellite instability in Arabidopsis increases with plant development. Plant Physiol. 154:31415–27
    [Google Scholar]
  35. 35.
    Grandbastien M-A, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B et al. 2005. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet. Genome Res. 110:1–4229–41
    [Google Scholar]
  36. 36.
    Gregory TR. 2004. Insertion–deletion biases and the evolution of genome size. Gene 324:15–34
    [Google Scholar]
  37. 37.
    Hanawalt PC. 2002. Subpathways of nucleotide excision repair and their regulation. Oncogene 21:588949–56
    [Google Scholar]
  38. 38.
    Hanlon VCT, Otto SP, Aitken SN. 2019. Somatic mutations substantially increase the per-generation mutation rate in the conifer Picea sitchensis. Evol. Lett. 3:4348–58
    [Google Scholar]
  39. 39.
    Hannan Parker A, Wilkinson SW, Ton J 2022. Epigenetics: a catalyst of plant immunity against pathogens. New Phytol. 233:166–83
    [Google Scholar]
  40. 40.
    Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M et al. 2013. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat. Genet. 45:8891–98
    [Google Scholar]
  41. 41.
    Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA et al. 2017. Whole-genome landscapes of major melanoma subtypes. Nature 545:7653175–80
    [Google Scholar]
  42. 42.
    Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G et al. 2014. Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26:1121–35
    [Google Scholar]
  43. 43.
    Hitomi K, Arvai AS, Yamamoto J, Hitomi C, Teranishi M et al. 2012. Eukaryotic class II cyclobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants. J. Biol. Chem. 287:1512060–69
    [Google Scholar]
  44. 44.
    Hodgkinson A, Eyre-Walker A. 2011. Variation in the mutation rate across mammalian genomes. Nat. Rev. Genet. 12:11756–66
    [Google Scholar]
  45. 45.
    Hofmeister BT, Denkena J, Colomé-Tatché M, Shahryary Y, Hazarika R et al. 2020. A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa. Genome Biol. 21:1259
    [Google Scholar]
  46. 46.
    Huang Y, Gu L, Li G-M. 2018. H3K36me3-mediated mismatch repair preferentially protects actively transcribed genes from mutation. J. Biol. Chem. 293:207811–23
    [Google Scholar]
  47. 47.
    Jia Q, den Dulk-Ras A, Shen H, Hooykaas PJJ, de Pater S. 2013. Poly(ADP-ribose)polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana. Plant Mol. Biol. 82:4–5339–51
    [Google Scholar]
  48. 48.
    Jiang C, Mithani A, Belfield EJ, Mott R, Hurst LD, Harberd NP. 2014. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res. 24:111821–29
    [Google Scholar]
  49. 49.
    Johns MA, Mottinger J, Freeling M. 1985. A low copy number, copia-like transposon in maize. EMBO J. 4:51093–1101
    [Google Scholar]
  50. 50.
    Karst SM, Ziels RM, Kirkegaard RH, Sørensen EA, McDonald D et al. 2021. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat. Methods 18:2165–69
    [Google Scholar]
  51. 51.
    Katju V, Konrad A, Deiss TC, Bergthorsson U. 2022. Mutation rate and spectrum in obligately outcrossing Caenorhabditis elegans mutation accumulation lines subjected to RNAi-induced knockdown of the mismatch repair gene msh-2. G3 12:1jkab364
    [Google Scholar]
  52. 52.
    Kawabe A, Miyashita NT. 2003. Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet. Syst. 78:5343–52
    [Google Scholar]
  53. 53.
    Kikuchi Y, Umemura H, Nishitani S, Iida S, Fukasawa R et al. 2015. Human mediator MED17 subunit plays essential roles in gene regulation by associating with the transcription and DNA repair machineries. Genes Cells 20:3191–202
    [Google Scholar]
  54. 54.
    Kim J-H, Ryu TH, Lee SS, Lee S, Chung BY 2019. Ionizing radiation manifesting DNA damage response in plants: an overview of DNA damage signaling and repair mechanisms in plants. Plant Sci. 278:44–53
    [Google Scholar]
  55. 55.
    Kimura S, Tahira Y, Ishibashi T, Mori Y, Mori T et al. 2004. DNA repair in higher plants; photoreactivation is the major DNA repair pathway in non-proliferating cells while excision repair (nucleotide excision repair and base excision repair) is active in proliferating cells. Nucleic Acids Res. 32:92760–67
    [Google Scholar]
  56. 56.
    Kovalchuk I, Kovalchuk O, Hohn B. 2000. Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J. 19:174431–38
    [Google Scholar]
  57. 57.
    Kowalska E, Strzałka W, Oyama T. 2020. A crystallization and preliminary X-ray diffraction study of the Arabidopsis thaliana proliferating cell nuclear antigen (PCNA2) alone and in a complex with a PIP-box peptide from Flap endonuclease 1. Acta Biochim. Pol. 67:149–52
    [Google Scholar]
  58. 58.
    Krasovec M, Chester M, Ridout K, Filatov DA. 2018. The mutation rate and the age of the sex chromosomes in Silene latifolia. Curr. Biol. 28:111832–38.e4
    [Google Scholar]
  59. 59.
    Krasovec M, Eyre-Walker A, Sanchez-Ferandin S, Piganeau G. 2017. Spontaneous mutation rate in the smallest photosynthetic eukaryotes. Mol. Biol. Evol. 34:71770–79
    [Google Scholar]
  60. 60.
    Krasovec M, Lipinska AP, Coelho SM. 2022. Low spontaneous mutation rate in a complex multicellular eukaryote with a haploid-diploid life cycle. bioRxiv 2022.05.13.491831. https://doi.org/10.1101/2022.05.13.491831
  61. 61.
    Krasovec M, Rickaby REM, Filatov DA. 2020. Evolution of mutation rate in astronomically large phytoplankton populations. Genome Biol. Evol. 12:71051–59
    [Google Scholar]
  62. 62.
    Krasovec M, Sanchez-Brosseau S, Piganeau G. 2019. First estimation of the spontaneous mutation rate in diatoms. Genome Biol. Evol. 11:71829–37
    [Google Scholar]
  63. 63.
    Lanfear R. 2018. Do plants have a segregated germline?. PLOS Biol. 16:5e2005439
    [Google Scholar]
  64. 64.
    Lavelle C, Foray N. 2014. Chromatin structure and radiation-induced DNA damage: from structural biology to radiobiology. Int. J. Biochem. Cell Biol. 49:84–97
    [Google Scholar]
  65. 65.
    Law YK, Forties RA, Liu X, Poirier MG, Kohler B. 2013. Sequence-dependent thymine dimer formation and photoreversal rates in double-stranded DNA. Photochem. Photobiol. Sci. 12:81431–39
    [Google Scholar]
  66. 66.
    Léger-Pigout M, Krasovec M. 2022. Very small spontaneous structural mutation rate in green algae. bioRxiv 2022.02.09.479524. https://doi.org/10.1101/2022.02.09.479524
  67. 67.
    Li B, Zhao L, Zhang S, Cai H, Xu L et al. 2022. The mutational, epigenetic, and transcriptional effects between mixed high-energy particle field (CR) and 7Li-ion beams (LR) radiation in wheat M1 seedlings. Front. Plant Sci. 13:878420
    [Google Scholar]
  68. 68.
    Li F, Mao G, Tong D, Huang J, Gu L et al. 2013. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 153:3590–600
    [Google Scholar]
  69. 69.
    Li G, Chern M, Jain R, Martin JA, Schackwitz WS et al. 2016. Genome-wide sequencing of 41 rice (Oryza sativa L.) mutated lines reveals diverse mutations induced by fast-neutron irradiation. Mol. Plant 9:71078–81
    [Google Scholar]
  70. 70.
    Li G, Jain R, Chern M, Pham NT, Martin JA et al. 2017. The sequences of 1504 mutants in the model rice variety Kitaake facilitate rapid functional genomic studies. Plant Cell 29:61218–31
    [Google Scholar]
  71. 71.
    Liu Y, Du H, Li P, Shen Y, Peng H et al. 2020. Pan-genome of wild and cultivated soybeans. Cell 182:162–76.e13
    [Google Scholar]
  72. 72.
    Liu Y, Tian T, Zhang K, You Q, Yan H et al. 2018. PCSD: a plant chromatin state database. Nucleic Acids Res. 46:D1D1157–67
    [Google Scholar]
  73. 73.
    Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP et al. 2007. Molecular Cell Biology New York: W.H. Freeman. , 6th ed..
  74. 74.
    Long H, Sung W, Kucukyildirim S, Williams E, Miller SF et al. 2018. Evolutionary determinants of genome-wide nucleotide composition. Nat. Ecol. Evol. 2:2237–40
    [Google Scholar]
  75. 75.
    López-Cortegano E, Craig RJ, Chebib J, Balogun EJ, Keightley PD. 2022. Rates and spectra of de novo structural mutation in Chlamydomonas reinhardtii. bioRxiv 2022.05.23.493040. https://doi.org/10.1101/2022.05.23.493040
  76. 76.
    López-Cortegano E, Craig RJ, Chebib J, Samuels T, Morgan AD et al. 2021. De novo mutation rate variation and its determinants in Chlamydomonas. Mol. Biol. Evol. 38:93709–23
    [Google Scholar]
  77. 77.
    Lu Z, Cui J, Wang L, Teng N, Zhang S et al. 2021. Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures. Genome Biol. 22:1160
    [Google Scholar]
  78. 78.
    Lynch M. 2010. Evolution of the mutation rate. Trends Genet. 26:8345–52
    [Google Scholar]
  79. 79.
    Lynch M, Ackerman MS, Gout J-F, Long H, Sung W et al. 2016. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17:11704–14
    [Google Scholar]
  80. 80.
    Manova V, Gecheff K, Stoilov L. 2006. Efficient repair of bleomycin-induced double-strand breaks in barley ribosomal genes. Mutat. Res. 601:1–2179–90
    [Google Scholar]
  81. 81.
    Manova V, Gruszka D. 2015. DNA damage and repair in plants—from models to crops. Front. Plant Sci. 6:885
    [Google Scholar]
  82. 82.
    Martincorena I, Luscombe NM. 2013. Non-random mutation: the evolution of targeted hypermutation and hypomutation. Bioessays 35:2123–30
    [Google Scholar]
  83. 83.
    Martincorena I, Seshasayee ASN, Luscombe NM. 2012. Evidence of non-random mutation rates suggests an evolutionary risk management strategy. Nature 485:739695–98
    [Google Scholar]
  84. 84.
    McClintock B. 1950. The origin and behavior of mutable loci in maize. PNAS 36:6344–55
    [Google Scholar]
  85. 85.
    McClintock B. 1984. The significance of responses of the genome to challenge. Science 226:4676792–801
    [Google Scholar]
  86. 86.
    Monroe JG, McKay JK, Weigel D, Flood PJ. 2021. The population genomics of adaptive loss of function. Heredity 126:383–95
    [Google Scholar]
  87. 87.
    Monroe JG, Murray KD, Xian W, Carbonell-Bejerano P, Fenster CB, Weigel D. 2022a. Report of mutation biases mirroring selection in Arabidopsis thaliana unlikely to be entirely due to variant calling errors. bioRxiv 2022.08.21.504682. https://doi.org/10.1101/2022.08.21.504682
  88. 88.
    Monroe JG, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M et al. 2022b. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 602:101–5Identified relationships between epigenomic features and mutation rates, providing an evo-mechanistic model for reduced mutation rate in conserved genome regions.
    [Google Scholar]
  89. 89.
    Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R et al. 2021. The mutational landscape of human somatic and germline cells. Nature 597:381–86
    [Google Scholar]
  90. 90.
    Morales C, Ruiz-Torres M, Rodríguez-Acebes S, Lafarga V, Rodríguez-Corsino M et al. 2020. PDS5 proteins are required for proper cohesin dynamics and participate in replication fork protection. J. Biol. Chem. 295:1146–57
    [Google Scholar]
  91. 91.
    Ness RW, Morgan AD, Colegrave N, Keightley PD. 2012. Estimate of the spontaneous mutation rate in Chlamydomonas reinhardtii. Genetics 192:41447–54
    [Google Scholar]
  92. 92.
    Ness RW, Morgan AD, Vasanthakrishnan RB, Colegrave N, Keightley PD. 2015. Extensive de novo mutation rate variation between individuals and across the genome of Chlamydomonas reinhardtii. Genome Res. 25:111739–49
    [Google Scholar]
  93. 93.
    Niu Q, Song Z, Tang K, Chen L, Wang L et al. 2021. A histone H3K4me1-specific binding protein is required for siRNA accumulation and DNA methylation at a subset of loci targeted by RNA-directed DNA methylation. Nat. Commun. 12:13367
    [Google Scholar]
  94. 94.
    Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A et al. 2016. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol. Biotechnol. Equip. 30:11–16
    [Google Scholar]
  95. 95.
    Oman M, Alam A, Ness RW. 2022. How sequence context-dependent mutability drives mutation rate variation in the genome. Genome Biol. Evol. 14:3evac032
    [Google Scholar]
  96. 96.
    Orr AJ, Padovan A, Kainer D, Külheim C, Bromham L et al. 2020. A phylogenomic approach reveals a low somatic mutation rate in a long-lived plant. Proc. R. Soc. B 287:20192364
    [Google Scholar]
  97. 97.
    Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM et al. 2010. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:596192–94Pioneering mutation accumulation experiment in plants estimating the mutation rate directly with DNA sequencing.
    [Google Scholar]
  98. 98.
    Oya S, Takahashi M, Takashima K, Kakutani T, Inagaki S. 2021. Transcription-coupled and epigenome-encoded mechanisms direct H3K4 methylation. Nat. Commun. 12:4521
    [Google Scholar]
  99. 99.
    Oztas O, Selby CP, Sancar A, Adebali O. 2018. Genome-wide excision repair in Arabidopsis is coupled to transcription and reflects circadian gene expression patterns. Nat. Commun. 9:11503
    [Google Scholar]
  100. 100.
    Palidwor GA, Perkins TJ, Xia X. 2010. A general model of codon bias due to GC mutational bias. PLOS ONE 5:10e13431
    [Google Scholar]
  101. 101.
    Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Mittelsten Scheid O. 2010. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:93118–29
    [Google Scholar]
  102. 102.
    Perez-Roman E, Borredá C, López-García Usach A, Talon M 2022. Single-nucleotide mosaicism in citrus: estimations of somatic mutation rates and total number of variants. Plant Genome 15:1e20162
    [Google Scholar]
  103. 103.
    Phipps J, Dubrana K. 2022. DNA repair in space and time: safeguarding the genome with the cohesin complex. Genes 13:2198
    [Google Scholar]
  104. 104.
    Pradillo M, Knoll A, Oliver C, Varas J, Corredor E et al. 2015. Involvement of the cohesin cofactor PDS5 (SPO76) during meiosis and DNA repair in Arabidopsis thaliana. Front. Plant Sci. 6:1034
    [Google Scholar]
  105. 105.
    Puchta H. 2005. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56:4091–14
    [Google Scholar]
  106. 106.
    Puchta H, Fauser F. 2014. Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J. 78:5727–41
    [Google Scholar]
  107. 107.
    Qiao X, Li Q, Yin H, Qi K, Li L et al. 2019. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 20:138
    [Google Scholar]
  108. 108.
    Quadrana L, Etcheverry M, Gilly A, Caillieux E, Madoui M-A et al. 2019. Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nat. Commun. 10:13421Demonstrated that transposable element insertion is affected by chromatin states, leading to bias in insertion related to gene functions.
    [Google Scholar]
  109. 109.
    Quiroz D, Lopez-Mateos D, Zhao K, Pierce A, Ortega L et al 2022. The H3K4me1 histone mark recruits DNA repair to functionally constrained genomic regions in plants. bioRxiv 2022.05.28.493846. https://doi.org/10.1101/2022.05.28.493846
  110. 110.
    Ren Y, He Z, Liu P, Traw B, Sun S et al. 2021. Somatic mutation analysis in Salix suchowensis reveals early-segregated cell lineages. Mol. Biol. Evol. 38:125292–308
    [Google Scholar]
  111. 111.
    Rhoades MM. 1941. The genetic control of mutability in maize. Cold Spring Harb. Symp. Quant. Biol. 9:138–44
    [Google Scholar]
  112. 112.
    Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. 2019. DNA base excision repair in plants: an unfolding story with familiar and novel characters. Front. Plant Sci. 10:1055
    [Google Scholar]
  113. 113.
    Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. 2021. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res. 49:1810431–47
    [Google Scholar]
  114. 114.
    Sandler G, Bartkowska M, Agrawal AF, Wright SI. 2020. Estimation of the SNP mutation rate in two vegetatively propagating species of duckweed. G3 10:114191–200
    [Google Scholar]
  115. 115.
    Satterlee JW, Strable J, Scanlon MJ. 2020. Plant stem-cell organization and differentiation at single-cell resolution. PNAS 117:5233689–99
    [Google Scholar]
  116. 116.
    Schärer OD. 2003. Chemistry and biology of DNA repair. Angew. Chem. Int. Ed. 42:262946–74
    [Google Scholar]
  117. 117.
    Schmid-Siegert E, Sarkar N, Iseli C, Calderon S, Gouhier-Darimont C et al. 2017. Low number of fixed somatic mutations in a long-lived oak tree. Nat. Plants 3:12926–29
    [Google Scholar]
  118. 118.
    Schmitt S, Leroy T, Heuertz M, Tysklind N. 2022. Somatic mutation detection: a critical evaluation through simulations and reanalyses in oaks. bioRxiv 2021.10.11.462798. https://doi.org/10.1101/2021.10.11.462798
  119. 119.
    Shrivastav N, Li D, Essigmann JM. 2010. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation. Carcinogenesis 31:159–70
    [Google Scholar]
  120. 120.
    Stadler LJ. 1928. Mutations in barley induced by X-rays and radium. Science 68:1756186–87Classic article reporting the discovery of mutagenesis by radiation.
    [Google Scholar]
  121. 121.
    Stadler LJ. 1930. The frequency of mutation of specific genes in maize. Anat. Rec. 47:381
    [Google Scholar]
  122. 122.
    Stadler LJ. 1946. Spontaneous mutation at the R locus in maize. I. The aleurone-color and plant-color effects. Genetics 31:4377–94
    [Google Scholar]
  123. 123.
    Stadler LJ. 1948. Spontaneous mutation at the R locus in maize. II. Race differences in mutation rate. Am. Nat. 82:807289–314
    [Google Scholar]
  124. 124.
    Stadler LJ. 1949. Spontaneous mutation at the R locus in maize. III. Genetic modification of mutation rate. Am. Nat. 83:8085–30
    [Google Scholar]
  125. 125.
    Stadler LJ. 1950. Spontaneous mutation at the R locus in maize. IV. An R linked modifier of R mutation rate. Portugaliae Acta Biol. Ser. A. Goldschmidt Volume:785–97
    [Google Scholar]
  126. 126.
    Stebbins GL. 1982. Darwin to DNA, Molecules to Humanity Oxford, UK: W.H. Freeman
  127. 127.
    Stoltzfus A, Yampolsky LY. 2009. Climbing Mount Probable: mutation as a cause of nonrandomness in evolution. J. Hered. 100:5637–47
    [Google Scholar]
  128. 128.
    Sturtevant AH. 1937. Essays on evolution. I. On the effects of selection on mutation rate. Q. Rev. Biol. 12:4464–67
    [Google Scholar]
  129. 129.
    Sun Z, Zhang Y, Jia J, Fang Y, Tang Y et al. 2020. H3K36me3, message from chromatin to DNA damage repair. Cell Biosci. 10:9
    [Google Scholar]
  130. 130.
    Supek F, Lehner B. 2017. Clustered mutation signatures reveal that error-prone DNA repair targets mutations to active genes. Cell 170:3534–47.e23
    [Google Scholar]
  131. 131.
    Suter B, Livingstone-Zatchej M, Thoma F. 1997. Chromatin structure modulates DNA repair by photolyase in vivo. EMBO J. 16:82150–60
    [Google Scholar]
  132. 132.
    Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM et al. 2019. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47:D1D941–47
    [Google Scholar]
  133. 133.
    Thieme M, Brêchet A, Keller B, Bucher E, Roulin AC. 2022. Heat-induced transposition increases drought tolerance in Arabidopsis. bioRxiv 2021.11.25.469987. https://doi.org/10.1101/2021.11.25.469987
    [Crossref]
  134. 134.
    Tittel-Elmer M, Bucher E, Broger L, Mathieu O, Paszkowski J, Vaillant I. 2010. Stress-induced activation of heterochromatic transcription. PLOS Genet. 6:10e1001175
    [Google Scholar]
  135. 135.
    Tuteja N, Ahmad P, Panda BB, Tuteja R. 2009. Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat. Res. 681:2–3134–49
    [Google Scholar]
  136. 136.
    Uchiyama Y, Kimura S, Yamamoto T, Ishibashi T, Sakaguchi K. 2004. Plant DNA polymerase λ, a DNA repair enzyme that functions in plant meristematic and meiotic tissues. Eur. J. Biochem. 271:132799–807
    [Google Scholar]
  137. 137.
    van Harten AM. 1998. Mutation Breeding: Theory and Practical Applications Cambridge, UK: Cambridge Univ. Press
  138. 138.
    Velappan Y, Signorelli S, Considine MJ. 2017. Cell cycle arrest in plants: What distinguishes quiescence, dormancy and differentiated G1?. Ann. Bot. 120:4495–509
    [Google Scholar]
  139. 139.
    Viguera E, Canceill D, Ehrlich SD. 2001. Replication slippage involves DNA polymerase pausing and dissociation. EMBO J. 20:102587–95
    [Google Scholar]
  140. 140.
    Volkova NV, Meier B, González-Huici V, Bertolini S, Gonzalez S et al. 2020. Mutational signatures are jointly shaped by DNA damage and repair. Nat. Commun. 11:12169
    [Google Scholar]
  141. 141.
    Wang L, Ji Y, Hu Y, Hu H, Jia X et al. 2019. The architecture of intra-organism mutation rate variation in plants. PLOS Biol. 17:4e3000191
    [Google Scholar]
  142. 142.
    Wang M, Lu Y, Botella JR, Mao Y, Hua K, Zhu J-K. 2017. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol. Plant 10:71007–10
    [Google Scholar]
  143. 143.
    Watanabe K, Yamada N, Takeuchi Y. 2006. Oxidative DNA damage in cucumber cotyledons irradiated with ultraviolet light. J. Plant Res. 119:3239–46
    [Google Scholar]
  144. 144.
    Watson JM, Platzer A, Kazda A, Akimcheva S, Valuchova S et al. 2016. Germline replications and somatic mutation accumulation are independent of vegetative life span in Arabidopsis. PNAS 113:4312226–31
    [Google Scholar]
  145. 145.
    Weiss T, Crisp PA, Rai KM, Song M, Springer NM, Zhang F. 2022. Epigenetic features drastically impact CRISPR–Cas9 efficacy in plants. Plant Physiol. 190:1153–64Demonstrated that histone modifications affect the efficacy of CRISPR-Cas9, with implications for gene engineering.
    [Google Scholar]
  146. 146.
    Weng M-L, Becker C, Hildebrandt J, Neumann M, Rutter MT et al. 2019. Fine-grained analysis of spontaneous mutation spectrum and frequency in Arabidopsis thaliana. Genetics 211:270314Largest mutation accumulation experiment conducted to date in plants, with 107 lines accumulating mutations for 24 generations.
    [Google Scholar]
  147. 147.
    Wiles ET, Selker EU. 2017. H3K27 methylation: a promiscuous repressive chromatin mark. Curr. Opin. Genet. Dev. 43:31–37
    [Google Scholar]
  148. 148.
    Willing E-M, Piofczyk T, Albert A, Winkler JB, Schneeberger K, Pecinka A. 2016. UVR2 ensures transgenerational genome stability under simulated natural UV-B in Arabidopsis thaliana. Nat. Commun. 7:113522
    [Google Scholar]
  149. 149.
    Wu Z, Waneka G, Broz AK, King CR, Sloan DB. 2020. MSH1 is required for maintenance of the low mutation rates in plant mitochondrial and plastid genomes. PNAS 117:2816448–55
    [Google Scholar]
  150. 150.
    Wyant SR, Rodriguez MF, Carter CK, Parrott WA, Jackson SA et al. 2022. Fast neutron mutagenesis in soybean enriches for small indels and creates frameshift mutations. G3 12:2jkab431
    [Google Scholar]
  151. 151.
    Yan W, Deng XW, Yang C, Tang X 2021. The genome-wide EMS mutagenesis bias correlates with sequence context and chromatin structure in rice. Front. Plant Sci. 12:579675
    [Google Scholar]
  152. 152.
    Yang N, Xu X-W, Wang R-R, Peng W-L, Cai L et al. 2017. Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat. Commun. 8:11874
    [Google Scholar]
  153. 153.
    Yang S, Wang L, Huang J, Zhang X, Yuan Y et al. 2015. Parent–progeny sequencing indicates higher mutation rates in heterozygotes. Nature 523:7561463–67
    [Google Scholar]
  154. 154.
    Yao Y, Kovalchuk I. 2011. Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants. Mutat. Res. 707:1–261–66
    [Google Scholar]
  155. 155.
    Yoshida K, Gowers KHC, Lee-Six H, Chandrasekharan DP, Coorens T et al. 2020. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578:7794266–72
    [Google Scholar]
  156. 156.
    Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. 2021. DNA damage—how and why we age?. eLife 10:e62852
    [Google Scholar]
  157. 157.
    Zhou Y, Zhang Z, Bao Z, Li H, Lyu Y et al. 2022. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606:7914527–34
    [Google Scholar]
  158. 158.
    Zhu X, Xie S, Tang K, Kalia RK, Liu N et al. 2021. Non-CG DNA methylation-deficiency mutations enhance mutagenesis rates during salt adaptation in cultured Arabidopsis cells. Stress Biol. 1:112
    [Google Scholar]
  159. 159.
    Zou X, Koh GCC, Nanda AS, Degasperi A, Urgo K et al. 2021. A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage. Nat. Cancer 2:6643–57
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-070522-054109
Loading
/content/journals/10.1146/annurev-arplant-070522-054109
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error