1932

Abstract

Recurring patterns are an integral part of life on Earth. Through evolution or breeding, plants have acquired systems that coordinate with the cyclic patterns driven by Earth's movement through space. The biosystem responses to these physical rhythms result in biological cycles of daily and seasonal activity that feed back into the physical cycles. Signaling networks to coordinate growth and molecular activities with these persistent cycles have been integrated into plant biochemistry. The plant circadian clock is the coordinator of this complex, multiscale, temporal schedule. However, we have detailed knowledge of the circadian clock components and functions in only a few species under controlled conditions. We are just beginning to understand how the clock functions in real-world conditions. This review examines what we know about the circadian clock in diverse plant species, the challenges with extrapolating data from controlled environments, and the need to anticipate how plants will respond to climate change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-070522-065329
2023-05-22
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-070522-065329.html?itemId=/content/journals/10.1146/annurev-arplant-070522-065329&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adams S, Grundy J, Veflingstad SR, Dyer NP, Hannah MA et al. 2018. Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genome-wide analysis of LHY binding targets. New Phytol. 220:3893–907
    [Google Scholar]
  2. 2.
    Ambardekar AA, Siebenmorgen TJ, Counce PA, Lanning SB, Mauromoustakos A. 2011. Impact of field-scale nighttime air temperatures during kernel development on rice milling quality. Field Crops Res. 122:3179–85
    [Google Scholar]
  3. 3.
    Annunziata MG, Apelt F, Carillo P, Krause U, Feil R et al. 2017. Getting back to nature: a reality check for experiments in controlled environments. J. Exp. Bot. 68:164463–77
    [Google Scholar]
  4. 4.
    Barton S, Jenkins J, Buckling A, Schaum C-E, Smirnoff N et al. 2020. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecol. Lett. 23:4722–33
    [Google Scholar]
  5. 5.
    Bendix C, Marshall CM, Harmon FG. 2015. Circadian clock genes universally control key agricultural traits. Mol. Plant 8:81135–52
    [Google Scholar]
  6. 6.
    Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:2287–304.e15
    [Google Scholar]
  7. 7.
    Bradfield M, Stamp N. 2004. Effect of nighttime temperature on tomato plant defensive chemistry. J. Chem. Ecol. 30:91713–21
    [Google Scholar]
  8. 8.
    Brouwer P, Bräutigam A, Buijs VA, Tazelaar AOE, van der Werf A et al. 2017. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N2 fixation by Nostoc azollae sustain the astonishing productivity of Azolla ferns without nitrogen fertilizer. Front. Plant Sci. 8:442
    [Google Scholar]
  9. 9.
    Bünning E. 1964. The Physiological Clock: Endogenous Diurnal Rhythms and Biological Chronometry Berlin/Heidelberg: Springer
  10. 10.
    Burgie ES, Bussell AN, Lye S-H, Wang T, Hu W et al. 2017. Photosensing and thermosensing by phytochrome B require both proximal and distal allosteric features within the dimeric photoreceptor. Sci. Rep. 7:113648
    [Google Scholar]
  11. 11.
    Casal JJ. 2013. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 64:403–27
    [Google Scholar]
  12. 12.
    Cha J-Y, Kim J, Kim T-S, Zeng Q, Wang L et al. 2017. GIGANTEA is a co-chaperone which facilitates maturation of ZEITLUPE in the Arabidopsis circadian clock. Nat. Commun. 8:13
    [Google Scholar]
  13. 13.
    Chaturvedi AK, Bahuguna RN, Pal M, Shah D, Maurya S, Jagadish KSV. 2017. Elevated CO2 and heat stress interactions affect grain yield, quality and mineral nutrient composition in rice under field conditions. Field Crops Res. 206:149–57
    [Google Scholar]
  14. 14.
    Cheesman AW, Winter K. 2013. Elevated night-time temperatures increase growth in seedlings of two tropical pioneer tree species. New Phytol. 197:41185–92
    [Google Scholar]
  15. 15.
    Chiodi AM, Potter BE, Larkin NK. 2021. Multi-decadal change in western US nighttime vapor pressure deficit. Geophys. Res. Lett. 48:15e2021GL092830
    [Google Scholar]
  16. 16.
    Clark J, Hidalgo O, Pellicer J, Liu H, Marquardt J et al. 2016. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytol. 210:31072–82
    [Google Scholar]
  17. 17.
    Clark JW, Donoghue PCJ. 2018. Whole-genome duplication and plant macroevolution. Trends Plant Sci. 23:10933–45
    [Google Scholar]
  18. 18.
    Claverie E, Meunier F, Javaux M, Sadok W. 2018. Increased contribution of wheat nocturnal transpiration to daily water use under drought. Physiol. Plant. 162:3290–300
    [Google Scholar]
  19. 19.
    Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S et al. 2012. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae. PLOS ONE 7:9e45307
    [Google Scholar]
  20. 20.
    Cohen SD, Tarara JM, Kennedy JA. 2008. Assessing the impact of temperature on grape phenolic metabolism. Anal. Chim. Acta 621:157–67
    [Google Scholar]
  21. 21.
    Corellou F, Schwartz C, Motta J-P, Djouani-Tahri EB, Sanchez F, Bouget F-Y. 2009. Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus. Plant Cell 21:113436–49
    [Google Scholar]
  22. 22.
    Coupel-Ledru A, Lebon E, Christophe A, Gallo A, Gago P et al. 2016. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. PNAS 113:328963–68
    [Google Scholar]
  23. 23.
    Creux N, Harmer S. 2019. Circadian rhythms in plants. Cold Spring Harb. Perspect. Biol. 11:9a034611
    [Google Scholar]
  24. 24.
    Cronn R, Dolan PC, Jogdeo S, Wegrzyn JL, Neale DB et al. 2017. Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles. BMC Genom. 18:1558
    [Google Scholar]
  25. 25.
    Dai S, Wei X, Pei L, Thompson RL, Liu Y et al. 2011. BROTHER OF LUX ARRHYTHMO is a component of the Arabidopsis circadian clock. Plant Cell 23:3961–72
    [Google Scholar]
  26. 26.
    Dathe H, Prager K, Mittag M. 2012. Novel interaction of two clock-relevant RNA-binding proteins C3 and XRN1 in Chlamydomonas reinhardtii. FEBS Lett. 586:223969–73
    [Google Scholar]
  27. 27.
    Davy R, Esau I, Chernokulsky A, Outten S, Zilitinkevich S. 2017. Diurnal asymmetry to the observed global warming. Int. J. Climatol. 37:179–93
    [Google Scholar]
  28. 28.
    de Los Reyes P, Romero-Campero FJ, Ruiz MT, Romero JM, Valverde F. 2017. Evolution of daily gene co-expression patterns from algae to plants. Front. Plant Sci. 8:1217
    [Google Scholar]
  29. 29.
    Desai JS, Lawas LMF, Valente AM, Leman AR, Grinevich DO et al. 2021. Warm nights disrupt transcriptome rhythms in field-grown rice panicles. PNAS 118:25e2025899118
    [Google Scholar]
  30. 30.
    Dickinson PJ, Kumar M, Martinho C, Yoo SJ, Lan H et al. 2018. Chloroplast signaling gates thermotolerance in Arabidopsis. Cell Rep. 22:71657–65
    [Google Scholar]
  31. 31.
    Djouani-Tahri E-B, Christie JM, Sanchez-Ferandin S, Sanchez F, Bouget F-Y, Corellou F. 2011. A eukaryotic LOV-histidine kinase with circadian clock function in the picoalga Ostreococcus. Plant J. 65:4578–88
    [Google Scholar]
  32. 32.
    Dong MA, Farré EM, Thomashow MF. 2011. CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. PNAS 108:177241–46
    [Google Scholar]
  33. 33.
    Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15:10573–81
    [Google Scholar]
  34. 34.
    Dunlap JC. 1999. Molecular bases for circadian clocks. Cell 96:2271–90
    [Google Scholar]
  35. 35.
    Farré EM. 2020. The brown clock: circadian rhythms in stramenopiles. Physiol. Plant. 169:3430–41
    [Google Scholar]
  36. 36.
    Farré EM, Liu T. 2013. The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr. Opin. Plant Biol. 16:5621–29
    [Google Scholar]
  37. 37.
    Fernández-Milmanda GL, Ballaré CL 2021. Shade avoidance: expanding the color and hormone palette. Trends Plant Sci. 26:5509–23
    [Google Scholar]
  38. 38.
    Ferrari C, Proost S, Janowski M, Becker J, Nikoloski Z et al. 2019. Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida. Nat. Commun. 10:1737
    [Google Scholar]
  39. 39.
    Ficklin DL, Novick KA. 2017. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. 122:42061–79
    [Google Scholar]
  40. 40.
    Fowler SG, Cook D, Thomashow MF. 2005. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 137:3961–68
    [Google Scholar]
  41. 41.
    Fricke W. 2019. Night-time transpiration—favouring growth?. Trends Plant Sci. 24:4311–17
    [Google Scholar]
  42. 42.
    Gaston KJ. 2019. Nighttime ecology: the “nocturnal problem” revisited. Am. Nat. 193:4481–502
    [Google Scholar]
  43. 43.
    Gessler A, Roy J, Kayler Z, Ferrio JP, Alday JG et al. 2017. Night and day—circadian regulation of night-time dark respiration and light-enhanced dark respiration in plant leaves and canopies. Environ. Exp. Bot. 137:14–25
    [Google Scholar]
  44. 44.
    Glaubitz U, Erban A, Kopka J, Hincha DK, Zuther E. 2015. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner. J. Exp. Bot. 66:206385–97
    [Google Scholar]
  45. 45.
    Gould PD, Locke JCW, Larue C, Southern MM, Davis SJ et al. 2006. The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18:51177–87
    [Google Scholar]
  46. 46.
    Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB et al. 2013. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341:61501085–89
    [Google Scholar]
  47. 47.
    Gray JA, Shalit-Kaneh A, Chu DN, Hsu PY, Harmer SL. 2017. The REVEILLE clock genes inhibit growth of juvenile and adult plants by control of cell size. Plant Physiol. 173:42308–22
    [Google Scholar]
  48. 48.
    Greenham K, Lou P, Puzey JR, Kumar G, Arnevik C et al. 2017. Geographic variation of plant circadian clock function in natural and agricultural settings. J. Biol. Rhythms 32:126–34
    [Google Scholar]
  49. 49.
    Greenham K, Sartor RC, Zorich S, Lou P, Mockler TC, Robertson McClung C. 2020. Expansion of the circadian transcriptome in Brassica rapa and genome-wide diversification of paralog expression patterns. eLife 9:e58993
    [Google Scholar]
  50. 50.
    Grinevich DO, Desai JS, Stroup KP, Duan J, Slabaugh E, Doherty CJ. 2019. Novel transcriptional responses to heat revealed by turning up the heat at night. Plant Mol. Biol. 101:1–21–19
    [Google Scholar]
  51. 51.
    Gyllenstrand N, Karlgren A, Clapham D, Holm K, Hall A et al. 2014. No time for spruce: rapid dampening of circadian rhythms in Picea abies (L. Karst). Plant Cell Physiol. 55:3535–50
    [Google Scholar]
  52. 52.
    Heijde M, Zabulon G, Corellou F, Ishikawa T, Brazard J et al. 2010. Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes. Plant Cell Environ. 33:101614–26
    [Google Scholar]
  53. 53.
    Helfer A, Nusinow DA, Chow BY, Gehrke AR, Bulyk ML, Kay SA. 2011. LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr. Biol. 21:2126–33
    [Google Scholar]
  54. 54.
    Heskel MA, O'Sullivan OS, Reich PB, Tjoelker MG, Weerasinghe LK et al. 2016. Convergence in the temperature response of leaf respiration across biomes and plant functional types. PNAS 113:143832–37
    [Google Scholar]
  55. 55.
    Holefors A, Opseth L, Rosnes AKR, Ripel L, Snipen L et al. 2009. Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce. Plant Physiol. Biochem. 47:2105–15
    [Google Scholar]
  56. 56.
    Holm K, Källman T, Gyllenstrand N, Hedman H, Lagercrantz U. 2010. Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop?. BMC Plant Biol. 10:109
    [Google Scholar]
  57. 57.
    Huang H, Nusinow DA. 2016. Into the evening: complex interactions in the Arabidopsis circadian clock. Trends Genet. 32:10674–86
    [Google Scholar]
  58. 58.
    Hwang DY, Park S, Lee S, Lee SS, Imaizumi T, Song YH. 2019. GIGANTEA regulates the timing stabilization of CONSTANS by altering the interaction between FKF1 and ZEITLUPE. Mol. Cells 42:10693–701
    [Google Scholar]
  59. 59.
    Iliev D, Voytsekh O, Schmidt E-M, Fiedler M, Nykytenko A, Mittag M. 2006. A heteromeric RNA-binding protein is involved in maintaining acrophase and period of the circadian clock. Plant Physiol. 142:2797–806
    [Google Scholar]
  60. 60.
    Inoue K, Araki T, Endo M. 2018. Oscillator networks with tissue-specific circadian clocks in plants. Semin. Cell Dev. Biol. 83:78–85
    [Google Scholar]
  61. 61.
    Ito S, Song YH, Imaizumi T. 2012. LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol. Plant 5:3573–82
    [Google Scholar]
  62. 62.
    Izawa T, Mihara M, Suzuki Y, Gupta M, Itoh H et al. 2011. Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Plant Cell 23:51741–55
    [Google Scholar]
  63. 63.
    Jagadish SVK, Murty MVR, Quick WP. 2015. Rice responses to rising temperatures–challenges, perspectives and future directions. Plant Cell Environ. 38:91686–98
    [Google Scholar]
  64. 64.
    Jiang Y, Yang C, Huang S, Xie F, Xu Y et al. 2019. The ELF3-PIF7 interaction mediates the circadian gating of the shade response in Arabidopsis. iScience 22:288–98
    [Google Scholar]
  65. 65.
    Jing P, Wang D, Zhu C, Chen J 2016. Plant physiological, morphological and yield-related responses to night temperature changes across different species and plant functional types. Front. Plant Sci. 7:1774
    [Google Scholar]
  66. 66.
    Jung J-H, Barbosa AD, Hutin S, Kumita JR, Gao M et al. 2020. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585:256–60
    [Google Scholar]
  67. 67.
    Jung J-H, Domijan M, Klose C, Biswas S, Ezer D et al. 2016. Phytochromes function as thermosensors in Arabidopsis. Science 354:6314886–89
    [Google Scholar]
  68. 68.
    Kahle N, Sheerin DJ, Fischbach P, Koch L-A, Schwenk P et al. 2020. COLD REGULATED 27 and 28 are targets of CONSTITUTIVELY PHOTOMORPHOGENIC 1 and negatively affect phytochrome B signalling. Plant J. 104:41038–53
    [Google Scholar]
  69. 69.
    Kamioka M, Takao S, Suzuki T, Taki K, Higashiyama T et al. 2016. Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock. Plant Cell 28:3696–711
    [Google Scholar]
  70. 70.
    Kangur O, Kupper P, Sellin A. 2017. Predawn disequilibrium between soil and plant water potentials in light of climate trends predicted for northern Europe. Regional Environ. Change 17:72159–68
    [Google Scholar]
  71. 71.
    Kangur O, Steppe K, Schreel JDM, von der Crone JS, Sellin A. 2021. Variation in nocturnal stomatal conductance and development of predawn disequilibrium between soil and leaf water potentials in nine temperate deciduous tree species. Funct. Plant Biol. 48:5483–92
    [Google Scholar]
  72. 72.
    Karlgren A, Gyllenstrand N, Källman T, Lagercrantz U. 2013. Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst). PLOS ONE 8:3e60110
    [Google Scholar]
  73. 73.
    Kebrom TH, McKinley BA, Mullet JE. 2020. Shade signals alter the expression of circadian clock genes in newly-formed bioenergy sorghum internodes. Plant Direct 4:6e00235
    [Google Scholar]
  74. 74.
    Khoder MI. 2009. Diurnal, seasonal and weekdays-weekends variations of ground level ozone concentrations in an urban area in greater Cairo. Environ. Monit. Assess. 149:1–4349–62
    [Google Scholar]
  75. 75.
    Kidokoro S, Hayashi K, Haraguchi H, Ishikawa T, Soma F et al. 2021. Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in Arabidopsis. PNAS 118:10e2021048118
    [Google Scholar]
  76. 76.
    Kidokoro S, Shinozaki K, Yamaguchi-Shinozaki K. 2022. Transcriptional regulatory network of plant cold-stress responses. Trends Plant Sci. 27:9922–35
    [Google Scholar]
  77. 77.
    Kim Y, Lim J, Yeom M, Kim H, Kim J et al. 2013. ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration. Cell Rep. 3:3671–77
    [Google Scholar]
  78. 78.
    Kubota A, Kita S, Ishizaki K, Nishihama R, Yamato KT, Kohchi T. 2014. Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nat. Commun. 5:3668
    [Google Scholar]
  79. 79.
    Kugan HM, Rejab NA, Sahruzaini NA, Harikrishna JA, Baisakh N, Cheng A. 2021. Circadian rhythms in legumes: What do we know and what else should we explore?. Int. J. Mol. Sci. 22:94588
    [Google Scholar]
  80. 80.
    Lane de Barros Dantas L, Almeida-Jesus FM, Oliveira de Lima N, Alves-Lima C, Nishiyama MY Jr. et al. 2020. Rhythms of transcription in field-grown sugarcane are highly organ specific. Sci. Rep. 10:6565
    [Google Scholar]
  81. 81.
    Lane Barros Dantas L, Marins Dourado M, Oliveira de Lima N, Cavaçana N, Nishiyama MY Jr et al. 2021. Field microenvironments regulate crop diel transcript and metabolite rhythms. New Phytol. 232:41738–49
    [Google Scholar]
  82. 82.
    Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J et al. 2018. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J. 93:3515–33
    [Google Scholar]
  83. 83.
    Laosuntisuk K, Doherty CJ. 2022. The intersection between circadian and heat-responsive regulatory networks controls plant responses to increasing temperatures. Biochem. Soc. Trans. 50:31151–65
    [Google Scholar]
  84. 84.
    Liao J, Cai Z, Song H, Zhang S. 2020. Poplar males and willow females exhibit superior adaptation to nocturnal warming than the opposite sex. Sci. Total Environ. 717:137179
    [Google Scholar]
  85. 85.
    Li B, Gao Z, Liu X, Sun D, Tang W. 2019. Transcriptional profiling reveals a time-of-day-specific role of REVEILLE 4/8 in regulating the first wave of heat shock-induced gene expression in Arabidopsis. Plant Cell 31:102353–69
    [Google Scholar]
  86. 86.
    Li F-W, Brouwer P, Carretero-Paulet L, Cheng S, de Vries J et al. 2018. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants 4:7460–72
    [Google Scholar]
  87. 87.
    Li M-W, Lam H-M. 2020. The modification of circadian clock components in soybean during domestication and improvement. Front. Genet. 11:571188
    [Google Scholar]
  88. 88.
    Linde A, Eklund DM, Kubota A, Pederson ERA, Holm K et al. 2017. Early evolution of the land plant circadian clock. New Phytol. 216:2576–90
    [Google Scholar]
  89. 89.
    Liu TL, Newton L, Liu M-J, Shiu S-H, Farré EM. 2016. A G-box-like motif is necessary for transcriptional regulation by circadian pseudo-response regulators in Arabidopsis. Plant Physiol. 170:1528–39. Correction 2016. Plant Physiol. 170:21168
    [Google Scholar]
  90. 90.
    Li X, Ma D, Lu SX, Hu X, Huang R et al. 2016. Blue light- and low temperature-regulated COR27 and COR28 play roles in the Arabidopsis circadian clock. Plant Cell 28:112755–69
    [Google Scholar]
  91. 91.
    Li Y, Xu M. 2017. CCT family genes in cereal crops: a current overview. Crop J. 5:6449–58
    [Google Scholar]
  92. 92.
    Lou P, Wu J, Cheng F, Cressman LG, Wang X, Robertson McClung C. 2012. Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa. Plant Cell 24:62415–26
    [Google Scholar]
  93. 93.
    Manassero NGU, Viola IL, Welchen E, Gonzalez DH. 2013. TCP transcription factors: architectures of plant form. Biomol. Concepts 4:2111–27
    [Google Scholar]
  94. 94.
    Marchant DB, Sessa EB, Wolf PG, Heo K, Barbazuk WB et al. 2019. The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly. Sci. Rep. 9:118181
    [Google Scholar]
  95. 95.
    Matsuo T, Iida T, Ishiura M. 2012. N-terminal acetyltransferase 3 gene is essential for robust circadian rhythm of bioluminescence reporter in Chlamydomonas reinhardtii. Biochem. Biophys. Res. Commun. 418:2342–46
    [Google Scholar]
  96. 96.
    Matsuo T, Iida T, Ohmura A, Gururaj M, Kato D et al. 2020. The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtii. PLOS Genet. 16:6e1008814
    [Google Scholar]
  97. 97.
    Matsuo T, Okamoto K, Onai K, Niwa Y, Shimogawara K, Ishiura M. 2008. A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Genes Dev. 22:7918–30
    [Google Scholar]
  98. 98.
    Matthews JSA, Vialet-Chabrand S, Lawson T 2018. Acclimation to fluctuating light impacts the rapidity of response and diurnal rhythm of stomatal conductance. Plant Physiol. 176:31939–51
    [Google Scholar]
  99. 99.
    Ma Y, Gil S, Grasser KD, Mas P. 2018. Targeted recruitment of the basal transcriptional machinery by LNK clock components controls the circadian rhythms of nascent RNAs in Arabidopsis. Plant Cell 30:4907–24
    [Google Scholar]
  100. 100.
    McClung CR. 2019. The plant circadian oscillator. Biology 8:114
    [Google Scholar]
  101. 101.
    McClung CR. 2021. Circadian clock components offer targets for crop domestication and improvement. Genes 12:3374
    [Google Scholar]
  102. 102.
    Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM et al. 2007. The diurnal project: diurnal and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb. Symp. Quant. Biol. 72:353–63
    [Google Scholar]
  103. 103.
    Mohammed AR, Tarpley L. 2011. High night temperature and plant growth regulator effects on spikelet sterility, grain characteristics and yield of rice (Oryza sativa L.) plants. Can. J. Plant Sci. 91:2283–91
    [Google Scholar]
  104. 104.
    Mo W, Zhang J, Zhang L, Yang Z, Yang L et al. 2022. Arabidopsis cryptochrome 2 forms photobodies with TCP22 under blue light and regulates the circadian clock. Nat. Commun. 13:12631
    [Google Scholar]
  105. 105.
    Müller N, Wenzel S, Zou Y, Künzel S, Sasso S et al. 2017. A plant cryptochrome controls key features of the Chlamydomonas circadian clock and its life cycle. Plant Physiol. 174:1185–201
    [Google Scholar]
  106. 106.
    Nagano AJ, Kawagoe T, Sugisaka J, Honjo MN, Iwayama K, Kudoh H. 2019. Annual transcriptome dynamics in natural environments reveals plant seasonal adaptation. Nat. Plants 5:17483Examined variation for two years and in daily rhythmic expression at four time points a year, revealing the consistency of the expression waveform of some of the core clock genes in natural conditions across the summer solstice and spring and autumn equinoxes.
    [Google Scholar]
  107. 107.
    Nagano AJ, Sato Y, Mihara M, Antonio BA, Motoyama R et al. 2012. Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell 151:61358–69
    [Google Scholar]
  108. 108.
    Nagel DH, Doherty CJ, Pruneda-Paz JL, Schmitz RJ, Ecker JR, Kay SA. 2015. Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. PNAS 112:34E4802–10
    [Google Scholar]
  109. 109.
    Nakamichi N. 2020. The transcriptional network in the Arabidopsis circadian clock system. Genes 11:111284
    [Google Scholar]
  110. 110.
    Nelissen H, Sprenger H, Demuynck K, De Block J, Van Hautegem T et al. 2020. From laboratory to field: yield stability and shade avoidance genes are massively differentially expressed in the field. Plant Biotechnol. J. 18:51112–14
    [Google Scholar]
  111. 111.
    Nie Y-M, Han F-X, Ma J-J, Chen X, Song Y-T et al. 2022. Genome-wide TCP transcription factors analysis provides insight into their new functions in seasonal and diurnal growth rhythm in Pinus tabuliformis. BMC Plant Biol. 22:1167
    [Google Scholar]
  112. 112.
    Nohales MA. 2021. Spatial organization and coordination of the plant circadian system. Genes 12:3442
    [Google Scholar]
  113. 113.
    Nose M, Kurita M, Tamura M, Matsushita M, Hiraoka Y et al. 2020. Effects of day length- and temperature-regulated genes on annual transcriptome dynamics in Japanese cedar (Cryptomeria japonica D. Don), a gymnosperm indeterminate species. PLOS ONE 15:3e0229843
    [Google Scholar]
  114. 114.
    Nose M, Watanabe A. 2014. Clock genes and diurnal transcriptome dynamics in summer and winter in the gymnosperm Japanese cedar (Cryptomeria japonica (L.f.) D.Don). BMC Plant Biol. 14:308
    [Google Scholar]
  115. 115.
    Oberschmidt O, Hücking C, Piechulla B. 1995. Diurnal Lhc gene expression is present in many but not all species of the plant kingdom. Plant Mol. Biol. 27:1147–53
    [Google Scholar]
  116. 116.
    Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 22:153–65
    [Google Scholar]
  117. 117.
    Okada R, Kondo S, Satbhai SB, Yamaguchi N, Tsukuda M, Aoki S. 2009. Functional characterization of CCA1/LHY homolog genes, PpCCA1a and PpCCA1b, in the moss Physcomitrella patens. Plant J. 60:3551–63
    [Google Scholar]
  118. 118.
    Okada R, Satbhai SB, Aoki S. 2009. Photoperiod-dependent regulation of cell growth by PpCCA1a and PpCCA1b genes encoding single-myb clock proteins in the moss Physcomitrella patens. Genes Genet. Syst. 84:5379–84
    [Google Scholar]
  119. 119.
    Panter PE, Muranaka T, Cuitun-Coronado D, Graham CA, Yochikawa A et al. 2019. Circadian regulation of the plant transcriptome under natural conditions. Front. Genet. 10:1239Provides an excellent visual of the differences between light and temperature patterns throughout the year and in environmental chambers.
    [Google Scholar]
  120. 120.
    Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM et al. 2004. Rice yields decline with higher night temperature from global warming. PNAS 101:279971–75
    [Google Scholar]
  121. 121.
    Plessis A, Hafemeister C, Wilkins O, Gonzaga ZJ, Meyer RS et al. 2015. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions. eLife 4:e08411
    [Google Scholar]
  122. 122.
    Pruneda-Paz JL, Breton G, Para A, Kay SA. 2009. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323:59201481–85
    [Google Scholar]
  123. 123.
    Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, van Zanten M. 2016. Molecular and genetic control of plant thermomorphogenesis. Nat. Plants 2:115190
    [Google Scholar]
  124. 124.
    Rédei GP. 1962. Supervital mutants of Arabidopsis. Genetics 47:4443–60
    [Google Scholar]
  125. 125.
    Rees H, Joynson R, Brown JKM, Hall A. 2021. Naturally occurring circadian rhythm variation associated with clock gene loci in Swedish Arabidopsis accessions. Plant Cell Environ. 44:3807–20
    [Google Scholar]
  126. 126.
    Reich PB, Sendall KM, Stefanski A, Wei X, Rich RL, Montgomery RA. 2016. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531:7596633–36
    [Google Scholar]
  127. 127.
    Resco de Dios V, Chowdhury FI, Granda E, Yao Y, Tissue DT. 2019. Assessing the potential functions of nocturnal stomatal conductance in C3 and C4 plants. New Phytol. 223:41696–706
    [Google Scholar]
  128. 128.
    Romero-Montepaone S, Poodts S, Fischbach P, Sellaro R, Zurbriggen MD, Casal JJ. 2020. Shade avoidance responses become more aggressive in warm environments. Plant Cell Environ. 43:71625–36A clear example of how information from growth chambers can be integrated with environmental data to successfully predict plant morphology in field conditions.
    [Google Scholar]
  129. 129.
    Rugnone ML, Faigón Soverna A, Sanchez SE, Schlaen RG, Hernando CE et al. 2013. LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator. PNAS 110:2912120–25
    [Google Scholar]
  130. 130.
    Sadok W. 2016. The circadian life of nocturnal water use: when late-night decisions help improve your day. Plant Cell Environ. 39:11–2
    [Google Scholar]
  131. 131.
    Sadok W, Jagadish SVK. 2020. The hidden costs of nighttime warming on yields. Trends Plant Sci. 25:7644–51
    [Google Scholar]
  132. 132.
    Sadok W, Tamang BG. 2019. Diversity in daytime and night-time transpiration dynamics in barley indicates adaptation to drought regimes across the Middle-East. J. Agron. Crop Sci. 205:4372–84
    [Google Scholar]
  133. 133.
    Salmela MJ, Weinig C. 2019. The fitness benefits of genetic variation in circadian clock regulation. Curr. Opin. Plant Biol. 49:86–93
    [Google Scholar]
  134. 134.
    Satbhai SB, Yamashino T, Okada R, Nomoto Y, Mizuno T et al. 2011. Pseudo-response regulator (PRR) homologues of the moss Physcomitrella patens: insights into the evolution of the PRR family in land plants. DNA Res. 18:139–52
    [Google Scholar]
  135. 135.
    Schumann T, Paul S, Melzer M, Dörmann P, Jahns P. 2017. Plant growth under natural light conditions provides highly flexible short-term acclimation properties toward high light stress. Front. Plant Sci. 8:681
    [Google Scholar]
  136. 136.
    Sellaro R, Pacín M, Casal JJ. 2012. Diurnal dependence of growth responses to shade in Arabidopsis: role of hormone, clock, and light signaling. Mol. Plant 5:3619–28
    [Google Scholar]
  137. 137.
    Sellin A, Lubenets K. 2010. Variation of transpiration within a canopy of silver birch: effect of canopy position and daily versus nightly water loss. Ecohydrology 3:4467–77
    [Google Scholar]
  138. 138.
    Serikawa M, Miwa K, Kondo T, Oyama T. 2008. Functional conservation of clock-related genes in flowering plants: overexpression and RNA interference analyses of the circadian rhythm in the monocotyledon Lemna gibba. Plant Physiol. 146:41952–63
    [Google Scholar]
  139. 139.
    Serrano G, Herrera-Palau R, Romero JM, Serrano A, Coupland G, Valverde F. 2009. Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling. Curr. Biol. 19:5359–68
    [Google Scholar]
  140. 140.
    Shimizu M, Ichikawa K, Aoki S. 2004. Photoperiod-regulated expression of the PpCOL1 gene encoding a homolog of CO/COL proteins in the moss Physcomitrella patens. Biochem. Biophys. Res. Commun. 324:41296–301
    [Google Scholar]
  141. 141.
    Shim JS, Kubota A, Imaizumi T. 2017. Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiol. 173:15–15
    [Google Scholar]
  142. 142.
    Shi W, Muthurajan R, Rahman H, Selvam J, Peng S et al. 2013. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytol. 197:3825–37
    [Google Scholar]
  143. 143.
    Simpson MG. 2019. Plant Systematics Burlington, MA: Elsevier. , 3rd ed..
  144. 144.
    Singh RK, Bhalerao RP, Eriksson ME. 2021. Growing in time: exploring the molecular mechanisms of tree growth. Tree Physiol. 41:4657–78
    [Google Scholar]
  145. 145.
    Song YH, Kubota A, Kwon MS, Covington MF, Lee N et al. 2018. Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat. Plants 4:10824–35
    [Google Scholar]
  146. 146.
    Steed G, Ramirez DC, Hannah MA, Webb AAR. 2021. Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science 372:6541abc9141
    [Google Scholar]
  147. 147.
    Strode SA, Ziemke JR, Oman LD, Lamsal LN, Olsen MA, Liu J. 2019. Global changes in the diurnal cycle of surface ozone. Atmos. Environ. 199:323–33
    [Google Scholar]
  148. 148.
    Takata N, Saito S, Saito CT, Uemura M. 2010. Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators. BMC Evol. Biol. 10:126
    [Google Scholar]
  149. 149.
    Tamang BG, Sadok W. 2018. Nightly business: Links between daytime canopy conductance, nocturnal transpiration and its circadian control illuminate physiological trade-offs in maize. Environ. Exp. Bot. 148:192–202
    [Google Scholar]
  150. 150.
    Velez-Ramirez AI, van Ieperen W, Vreugdenhil D, Millenaar FF. 2011. Plants under continuous light. Trends Plant Sci. 16:6310–18
    [Google Scholar]
  151. 151.
    Vialet-Chabrand S, Matthews JSA, Simkin AJ, Raines CA, Lawson T. 2017. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol. 173:42163–79
    [Google Scholar]
  152. 152.
    Vogt JHM, Schippers JHM. 2015. Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants. Front. Plant Sci. 6:513
    [Google Scholar]
  153. 153.
    Wang H, Wu G, Zhao B, Wang B, Lang Z et al. 2016. Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genom. 17:269
    [Google Scholar]
  154. 154.
    Wang J-L, Wang H-W, Cao Y-N, Kan S-L, Liu Y-Y. 2022. Comprehensive evolutionary analysis of the TCP gene family: further insights for its origin, expansion, and diversification. Front. Plant Sci. 13:994567
    [Google Scholar]
  155. 155.
    Wang P, Cui X, Zhao C, Shi L, Zhang G et al. 2017. COR27 and COR28 encode nighttime repressors integrating Arabidopsis circadian clock and cold response. J. Integr. Plant Biol. 59:278–85
    [Google Scholar]
  156. 156.
    Wang Y, Anderegg WRL, Venturas MD, Trugman AT, Yu K, Frankenberg C 2021. Optimization theory explains nighttime stomatal responses. New Phytol. 230:41550–61
    [Google Scholar]
  157. 157.
    Welch JR, Vincent JR, Auffhammer M, Moya PF, Dobermann A, Dawe D. 2010. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. PNAS 107:3314562–67
    [Google Scholar]
  158. 158.
    Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. PNAS 106:3313875–79
    [Google Scholar]
  159. 159.
    Wu J-F, Tsai H-L, Joanito I, Wu Y-C, Chang C-W et al. 2016. LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat. Commun. 7:113181
    [Google Scholar]
  160. 160.
    Xie Q, Wang P, Liu X, Yuan L, Wang L et al. 2014. LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell 26:72843–57
    [Google Scholar]
  161. 161.
    Yan J, Mao D, Liu X, Wang L, Xu F et al. 2017. Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba. Plant Cell Rep. 36:91387–99
    [Google Scholar]
  162. 162.
    Zeppel MJB, Lewis JD, Chaszar B, Smith RA, Medlyn BE et al. 2012. Nocturnal stomatal conductance responses to rising [CO2], temperature and drought. New Phytol. 193:4929–38
    [Google Scholar]
  163. 163.
    Zhang Y, Tang Q, Peng S, Zou Y, Chen S et al. 2013. Effects of high night temperature on yield and agronomic traits of irrigated rice under field chamber system condition. Aust. J. Crop Sci. 7:17–13
    [Google Scholar]
  164. 164.
    Zhang Y, Pfeiffer A, Tepperman JM, Dalton-Roesler J, Leivar P et al. 2020. Central clock components modulate plant shade avoidance by directly repressing transcriptional activation activity of PIF proteins. PNAS 117:63261–69
    [Google Scholar]
  165. 165.
    Zhao H, Xu D, Tian T, Kong F, Lin K et al. 2021. Molecular and functional dissection of EARLY-FLOWERING 3 (ELF3) and ELF4 in Arabidopsis. Plant Sci. 303:110786
    [Google Scholar]
  166. 166.
    Zhu W, Zhou H, Lin F, Zhao X, Jiang Y et al. 2020. COLD-REGULATED GENE27 integrates signals from light and the circadian clock to promote hypocotyl growth in Arabidopsis. Plant Cell 32:103155–69
    [Google Scholar]
  167. 167.
    Zobell O, Coupland G, Reiss B. 2005. The family of CONSTANS-like genes in Physcomitrella patens. Plant Biol. 7:3266–75
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-070522-065329
Loading
/content/journals/10.1146/annurev-arplant-070522-065329
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error